TY - JOUR
T1 - Comparing solution-gate and bottom-gate nanowire field-effect transistors on pH sensing with different salt concentrations and surface modifications
AU - Hu, Wen Pin
AU - Yang, Yong Qi
AU - Lee, Chia Hsuan
AU - Vu, Cao An
AU - Chen, Wen Yih
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/5/1
Y1 - 2024/5/1
N2 - Field-effect transistors (FETs) have been developed as pH sensors by using various device structures, fabrication technologies, and sensing film materials. Different transistor structures, like extended-gate (EG) FETs, floating-gate FET sensors, and dual-gate (DG) FETs, can enhance the sensor performance. In this article, we report the effects of using solution-gate and bottom-gate FET configurations on pH sensing and investigate the influence of different ionic concentrations of buffers in the measured signals. The surface charge of hafnium dioxide (HfO2) affected by the buffer pH, with/without the modification of polyethylene glycol (PEG) terminated with hydroxyl groups, and the location of applied gate voltage are vital factors to the sensor performance in pH sensing. Based on the results, the solution-gate FET exhibits good pH sensitivity even in the high ionic strength solutions of bis-tris propane (BTP), and these values of pH sensitivity are close to the Nernst limit (59.2 mV/pH). In general, silane-PEG-OH modification can reduce the deviations of measured signals in pH sensing. The performance of bottom-gate FET is inferior in the BTP buffers with high ionic solutions but suitable to be operated in low ionic concentrations, such as 0.1, 1, and 10 mM BTP buffers. The size of the ions was also studied and discussed. The solution-gate FET demonstrates excellent performance under high ionic strengths, meaning a more significant potential for detecting biological molecules under physiological conditions.
AB - Field-effect transistors (FETs) have been developed as pH sensors by using various device structures, fabrication technologies, and sensing film materials. Different transistor structures, like extended-gate (EG) FETs, floating-gate FET sensors, and dual-gate (DG) FETs, can enhance the sensor performance. In this article, we report the effects of using solution-gate and bottom-gate FET configurations on pH sensing and investigate the influence of different ionic concentrations of buffers in the measured signals. The surface charge of hafnium dioxide (HfO2) affected by the buffer pH, with/without the modification of polyethylene glycol (PEG) terminated with hydroxyl groups, and the location of applied gate voltage are vital factors to the sensor performance in pH sensing. Based on the results, the solution-gate FET exhibits good pH sensitivity even in the high ionic strength solutions of bis-tris propane (BTP), and these values of pH sensitivity are close to the Nernst limit (59.2 mV/pH). In general, silane-PEG-OH modification can reduce the deviations of measured signals in pH sensing. The performance of bottom-gate FET is inferior in the BTP buffers with high ionic solutions but suitable to be operated in low ionic concentrations, such as 0.1, 1, and 10 mM BTP buffers. The size of the ions was also studied and discussed. The solution-gate FET demonstrates excellent performance under high ionic strengths, meaning a more significant potential for detecting biological molecules under physiological conditions.
KW - Bottom-gate FET
KW - Field-effect transistor (FET)
KW - Ionic concentration
KW - pH sensing
KW - Solution-gate FET
UR - http://www.scopus.com/inward/record.url?scp=85185166901&partnerID=8YFLogxK
U2 - 10.1016/j.talanta.2024.125731
DO - 10.1016/j.talanta.2024.125731
M3 - 期刊論文
C2 - 38309116
AN - SCOPUS:85185166901
SN - 0039-9140
VL - 271
JO - Talanta
JF - Talanta
M1 - 125731
ER -