Color reproduction method by support vector regression for color computer vision

Bo Yang, Hung Yu Chou, Tsung Hsun Yang

研究成果: 雜誌貢獻期刊論文同行評審

7 引文 斯高帕斯(Scopus)

摘要

In the color computer vision system, the nonlinearity of the camera and computer screen may result in different colors between the screen and the actual color of objects, which requires for color calibration. In this paper, support vector regression (SVR) method was introduced to reproduce the colors of the nonlinear imaging system. Firstly, successive 3σ method was used to eliminate the large errors found in the color measurement. Then, based on the training set measured in advance, SVR model of RBF kernel was applied to map the nonlinear imaging system. In this step, two important parameters (C, γ) were optimized by the Least Mean Squared Validating Errors algorithm to get the best SVR model. Finally, this optimized model could predict the real values displayed on the screen. Compared with quadratic polynomial regression, BP neural network and relevance vector machine, the optimized SVR model has better ability in color reproduction performance and generalization.

原文???core.languages.en_GB???
頁(從 - 到)5649-5656
頁數8
期刊Optik
124
發行號22
DOIs
出版狀態已出版 - 11月 2013

指紋

深入研究「Color reproduction method by support vector regression for color computer vision」主題。共同形成了獨特的指紋。

引用此