Chinese grammatical error detection using a CNN-LSTM model

Lung Hao Lee, Bo Lin Lin, Liang Chih Yu, Yuen Hsien Tseng

研究成果: 書貢獻/報告類型會議論文篇章同行評審

6 引文 斯高帕斯(Scopus)

摘要

In this paper, we proposed a Convolution Neural Network with Long Short-Term Memory (CNN-LSTM) model for Chinese grammatical error detection. The TOCFL learner corpus is adopted to measure the system performance of indicating whether a sentence contains errors or not. Our model performs better than other neural network based methods in terms of accuracy for identifying an erroneous sentence written by Chinese language learners.

原文???core.languages.en_GB???
主出版物標題Proceedings of the 25th International Conference on Computers in Education, ICCE 2017 - Main Conference Proceedings
編輯Ahmad Fauzi Mohd Ayub, Antonija Mitrovic, Jie-Chi Yang, Su Luan Wong, Wenli Chen
發行者Asia-Pacific Society for Computers in Education
頁面919-921
頁數3
ISBN(列印)9789869401265
出版狀態已出版 - 2017
事件25th International Conference on Computers in Education, ICCE 2017 - Christchurch, New Zealand
持續時間: 4 12月 20178 12月 2017

出版系列

名字Proceedings of the 25th International Conference on Computers in Education, ICCE 2017 - Main Conference Proceedings

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???25th International Conference on Computers in Education, ICCE 2017
國家/地區New Zealand
城市Christchurch
期間4/12/178/12/17

指紋

深入研究「Chinese grammatical error detection using a CNN-LSTM model」主題。共同形成了獨特的指紋。

引用此