Chaos synchronization of nonlinear gyros using self-learning PID control approach

Chun Fei Hsu, Jang Zern Tsai, Chien Jung Chiu

研究成果: 雜誌貢獻期刊論文同行評審

16 引文 斯高帕斯(Scopus)


Since chaotic systems are important nonlinear deterministic systems that display complex, noisy-like and unpredictable behavior, synchronizing chaotic systems has become an important issue in the engineering community. Due to the proportional-integral-derivative (PID) controller has a simple architecture and easily designed, it was widely used in the industrial applications. However, the traditional PID controller usually needs some manual retuning before being used to practically application. To tackle this problem, this paper proposes a self-learning PID control (SLPIDC) system which is composed of a PID controller and a fuzzy compensator. The PID controller which is used to online approximate an ideal controller is the main controller. The controller gain factors of the PID controller can automatically tune based on the gradient descent method. The fuzzy compensator is designed to dispel the approximation error between the ideal controller and PID controller upon the system stability in the Lyapunov sense. From the simulation results, it is verified that the chaotic behavior of two nonlinear identical chaotic gyros can be synchronized by the proposed SLPIDC scheme without the chattering phenomena in the control effort after the controller parameters learning.

頁(從 - 到)430-439
期刊Applied Soft Computing Journal
出版狀態已出版 - 1月 2012


深入研究「Chaos synchronization of nonlinear gyros using self-learning PID control approach」主題。共同形成了獨特的指紋。