Catalytic oxidation of trichloroethylene from gas streams by perovskite-type catalysts

Cheng Bin He, Kuan Lun Pan, Moo Been Chang

研究成果: 雜誌貢獻期刊論文同行評審

23 引文 斯高帕斯(Scopus)


Three perovskite-type catalysts including LaMnO3, La0.8Ce0.2MnO3, and La0.8Ce0.2 Mn0.8Ni0.2O3 are prepared using citric acid sol-gel method and evaluated as catalyst for the oxidation of trichloroethylene (TCE) in air with temperature ranging from 100 to 600 °C. The physicochemical properties of three perovskite-type catalysts were characterized by SEM, EDS, XRD, BET, and XPS to investigate the relationship with catalytic activities. The results show that the removal efficiency of TCE achieved with La0.8Ce0.2Mn0.8Ni0.2O3 (the best one) reaches 100% at 400 °C and the mineralization efficiency reaches 100% at 600 °C. The enhanced activity can be attributed to the addition of Ce and Ni which increases the surface areas, active oxygen species, and the redox ability of the Mn4+/Mn3+ ratio on the catalyst surface. As La0.8Ce0.2Mn0.8Ni0.2O3 is applied for TCE oxidation, the main intermediate chlorinated byproduct detected is tetrachloroethylene (C2Cl4) which is generated by the reaction of TCE and chlorine (Cl2). The activation energy for the TCE oxidation with La0.8Ce0.2Mn0.8Ni0.2O3 catalyst is 51 kJ/mol using kinetic models of power–law type.

頁(從 - 到)11584-11594
期刊Environmental Science and Pollution Research
出版狀態已出版 - 1 4月 2018


深入研究「Catalytic oxidation of trichloroethylene from gas streams by perovskite-type catalysts」主題。共同形成了獨特的指紋。