摘要
A continuous pyrolysis system (CPS) with effective air pollution control devices (APCDs) is designed and constructed to remediate the soil containing high-concentration PCDD/Fs. The quench tower of the APCDs system can capture the pollutants of high boiling points from the flue gas of CPS and produces condensed water of high PCDD/Fs concentration (16-44 ng I-TEQ/L), and needs further treatment. First, the result of activated carbon adsorption test displays the PCDD/Fs toxicity concentration of effluents meet the regulatory standards as the liquid to solid ratio is controlled at 3: 1. However, large amount of activated carbon need to achieve the high removal efficiency leads to high cost, so catalytic hydrodechlorination technology with Pd/Al2O3 as catalyst is applied to treat the condensed water. The PCDD/Fs mass removal efficiency achieved without the reducing agent is 53.21% with the operating time of 180 min. As 5% reducing agent (methanol) is added, the removal efficiency increases to 71.86%. In addition, to better understand the differences between molecular hydrogen and hydrogen donor, the condensed water was pre-aerated with hydrogen and catalytic hydrodechlorination test with palladium as catalyst was conducted. The results show that the PCDD/Fs mass removal efficiency increases to 97.34% with the operating time of 180 min, demonstrating the high PCDD/Fs removal efficiency of catalytic hydrodechlorination.
原文 | ???core.languages.en_GB??? |
---|---|
頁(從 - 到) | 583-589 |
頁數 | 7 |
期刊 | Chemosphere |
卷 | 154 |
DOIs | |
出版狀態 | 已出版 - 1 7月 2016 |