## 摘要

The carrier effects on the excitonic absorption in GaAs quantum-well structures have been investigated both theoretically and experimentally. A two-dimensional model was used to calculate the oscillator strength and binding energy of excitons associated with filled subbands, with phase-space filling being taken into account. The calculation gives explicitly the oscillator strength of excitons as a function of two-dimensional carrier density. The results are compared with measured absorption data from a series of p-type modulation-doped GaAs/AlxGa1-xAs multiple-quantum-well structures, and quantitative agreement is obtained. The calculation shows that the effect of phase-space filling on the binding energy of a bound state can be described by an effective dielectric constant as a function of carrier density. It predicts the decrease of exciton binding energy with carrier density due to phase-space filling, which has been experimentally observed.

原文 | ???core.languages.en_GB??? |
---|---|

頁（從 - 到） | 5147-5153 |

頁數 | 7 |

期刊 | Physical Review B |

卷 | 42 |

發行號 | 8 |

DOIs | |

出版狀態 | 已出版 - 1990 |