Calderón-Zygmund operators on product Hardy spaces

Yongsheng Han, Ming Yi Lee, Chin Cheng Lin, Ying Chieh Lin

研究成果: 雜誌貢獻期刊論文同行評審

41 引文 斯高帕斯(Scopus)

摘要

Let T be a product Calderón-Zygmund singular integral introduced by Journé. Using an elegant rectangle atomic decomposition of Hp (Rn × Rm) and Journé's geometric covering lemma, R. Fefferman proved the remarkable Hp (Rn × Rm) - Lp (Rn × Rm) boundedness of T. In this paper we apply vector-valued singular integral, Calderón's identity, Littlewood-Paley theory and the almost orthogonality together with Fefferman's rectangle atomic decomposition and Journé's covering lemma to show that T is bounded on product Hp (Rn × Rm) for max {frac(n, n + ε), frac(m, m + ε)} < p ≤ 1 if and only if T1* (1) = T2* (1) = 0, where ε is the regularity exponent of the kernel of T.

原文???core.languages.en_GB???
頁(從 - 到)2834-2861
頁數28
期刊Journal of Functional Analysis
258
發行號8
DOIs
出版狀態已出版 - 15 4月 2010

指紋

深入研究「Calderón-Zygmund operators on product Hardy spaces」主題。共同形成了獨特的指紋。

引用此