Boundary Values of Harmonic Functions in Spaces of Triebel-Lizorkin Type

Chin Cheng Lin, Ying Chieh Lin

研究成果: 雜誌貢獻期刊論文同行評審

1 引文 斯高帕斯(Scopus)

摘要

Triebel (J Approx Theory 35:275-297, 1982; 52:162-203, 1988) investigated the boundary values of the harmonic functions in spaces of the Triebel-Lizorkin type Fα, qp on Rn+1+ by finding an characterization of the homogeneous Triebel-Lizorkin space Ḟα,qp via its harmonic extension, where 0 < p < ∞, 0 < q ≤ ∞, and α < min{-n/p, -n/q}. In this article, we extend Triebel's result to α < 0 and 0 < p, q ≤ ∞ by using a discrete version of reproducing formula and discretizing the norms in both Ḟα,qp. Furthermore, for α < 0 and 1 < p,q ≤ ∞, the mapping from harmonic functions in Fα,qp to their boundary values forms a topological isomorphism between Fα,qp and Ḟα,qp.

原文???core.languages.en_GB???
頁(從 - 到)23-48
頁數26
期刊Integral Equations and Operator Theory
79
發行號1
DOIs
出版狀態已出版 - 5月 2014

指紋

深入研究「Boundary Values of Harmonic Functions in Spaces of Triebel-Lizorkin Type」主題。共同形成了獨特的指紋。

引用此