TY - JOUR
T1 - Bond synergy model for bond energies in alloy oxides
AU - Chien, Szu Chia
AU - Windl, Wolfgang
N1 - Publisher Copyright:
© 2020 The Electrochemical Society (“ECS”). Published on behalf of ECS by IOP Publishing Limited.
PY - 2020/11
Y1 - 2020/11
N2 - In this work we introduce a metal-oxide bond-energy model for alloy oxides based on pure-phase bond energies and bond synergy factors that describe the effect of alloying on the bond energy between cations and oxygen, an important quantity to understand the formation of alloy oxides and their composition. This model is parameterized for binary cation-alloy oxides using density-functional theory energies and is shown to be directly transferable to multi-component alloy oxides. We parameterized the model for alloy oxide energies with metal cations that form the basis of corrosion resistant alloys, including Fe, Ni, Cr, Mo, Mn, W, Co, and Ru. We find that isoelectronic solutes allow quantification of pure-phase bond energies in oxides and the calculated bond energy values give sensible results compared to common experience, including the role of Cr as the passive-layer former in Fe–Ni–Cr alloys for corrosion applications. Additionally, the bond synergy factors give insights into the mutual strengthening and weakening effects of alloying on cation-oxygen bonds and can be related to enthalpy of mixing and charge neutrality constraints. We demonstrate how charge neutrality can be identified and achieved by the oxidation states that the different cations assume depending on alloy composition and the presence of defects.
AB - In this work we introduce a metal-oxide bond-energy model for alloy oxides based on pure-phase bond energies and bond synergy factors that describe the effect of alloying on the bond energy between cations and oxygen, an important quantity to understand the formation of alloy oxides and their composition. This model is parameterized for binary cation-alloy oxides using density-functional theory energies and is shown to be directly transferable to multi-component alloy oxides. We parameterized the model for alloy oxide energies with metal cations that form the basis of corrosion resistant alloys, including Fe, Ni, Cr, Mo, Mn, W, Co, and Ru. We find that isoelectronic solutes allow quantification of pure-phase bond energies in oxides and the calculated bond energy values give sensible results compared to common experience, including the role of Cr as the passive-layer former in Fe–Ni–Cr alloys for corrosion applications. Additionally, the bond synergy factors give insights into the mutual strengthening and weakening effects of alloying on cation-oxygen bonds and can be related to enthalpy of mixing and charge neutrality constraints. We demonstrate how charge neutrality can be identified and achieved by the oxidation states that the different cations assume depending on alloy composition and the presence of defects.
UR - http://www.scopus.com/inward/record.url?scp=85096558018&partnerID=8YFLogxK
U2 - 10.1149/1945-7111/abc6c7
DO - 10.1149/1945-7111/abc6c7
M3 - 期刊論文
AN - SCOPUS:85096558018
SN - 0013-4651
VL - 167
JO - Journal of the Electrochemical Society
JF - Journal of the Electrochemical Society
IS - 14
M1 - 141511
ER -