TY - JOUR
T1 - Biometric verification using thermal images of palm-dorsa vein patterns
AU - Lin, Chih Lung
AU - Fan, Kuo Chin
PY - 2004/2
Y1 - 2004/2
N2 - A novel approach to personal verification using the thermal images of palm-dorsa vein patterns is presented in this paper. The characteristics of the proposed method are that no prior knowledge about the objects is necessary and the parameters can be set automatically. In our work, an infrared (IR) camera is adopted as the input device to capture the thermal images of the palm-dorsa. In the proposed approach, two of the finger webs are automatically selected as the datum points to define the region of interest (ROI) on the thermal images. Within each ROI, feature points of the vein patterns (FPVPs) are extracted by modifying the basic tool of watershed transformation based on the properties of thermal images. According to the heat conduction law (the Fourier law), multiple features can be extracted from each FPVP for verification. Multiresolution representations of images with FPVPs are obtained using multiple multiresolution filters (MRFs) that extract the dominant points by filtering miscellaneous features for each FPVP. A hierarchical integrating function is then applied to integrate multiple features and multiresolution representations. The former is integrated by an inter-to-intra personal variation ratio and the latter is integrated by a positive Boolean function. We also introduce a logical and reasonable method to select a trained threshold for verification. Experiments were conducted using the thermal images of palm-dorsas and the results are satisfactory with an acceptable accuracy rate (FRR:2.3% and FAR:2.3%). The experimental results demonstrate that our proposed approach is valid and effective for vein-pattern verification.
AB - A novel approach to personal verification using the thermal images of palm-dorsa vein patterns is presented in this paper. The characteristics of the proposed method are that no prior knowledge about the objects is necessary and the parameters can be set automatically. In our work, an infrared (IR) camera is adopted as the input device to capture the thermal images of the palm-dorsa. In the proposed approach, two of the finger webs are automatically selected as the datum points to define the region of interest (ROI) on the thermal images. Within each ROI, feature points of the vein patterns (FPVPs) are extracted by modifying the basic tool of watershed transformation based on the properties of thermal images. According to the heat conduction law (the Fourier law), multiple features can be extracted from each FPVP for verification. Multiresolution representations of images with FPVPs are obtained using multiple multiresolution filters (MRFs) that extract the dominant points by filtering miscellaneous features for each FPVP. A hierarchical integrating function is then applied to integrate multiple features and multiresolution representations. The former is integrated by an inter-to-intra personal variation ratio and the latter is integrated by a positive Boolean function. We also introduce a logical and reasonable method to select a trained threshold for verification. Experiments were conducted using the thermal images of palm-dorsas and the results are satisfactory with an acceptable accuracy rate (FRR:2.3% and FAR:2.3%). The experimental results demonstrate that our proposed approach is valid and effective for vein-pattern verification.
KW - Inter-to-intra personal variation ratio
KW - Multiple multiresolution filters
KW - Positive Boolean function (PBF)
KW - Vein-pattern verification
KW - Watershed transformation
UR - http://www.scopus.com/inward/record.url?scp=1642392412&partnerID=8YFLogxK
U2 - 10.1109/TCSVT.2003.821975
DO - 10.1109/TCSVT.2003.821975
M3 - 期刊論文
AN - SCOPUS:1642392412
SN - 1051-8215
VL - 14
SP - 199
EP - 213
JO - IEEE Transactions on Circuits and Systems for Video Technology
JF - IEEE Transactions on Circuits and Systems for Video Technology
IS - 2
ER -