TY - JOUR
T1 - Biomass burning in the northern peninsular Southeast Asia
T2 - Aerosol chemical profile and potential exposure
AU - Pani, Shantanu Kumar
AU - Chantara, Somporn
AU - Khamkaew, Chanakarn
AU - Lee, Chung Te
AU - Lin, Neng Huei
N1 - Publisher Copyright:
© 2019 Elsevier B.V.
PY - 2019/8/1
Y1 - 2019/8/1
N2 - This study aimed to characterize the PM 2.5 (particulate matter ≤ 2.5 μm in aerodynamic diameter) chemical components obtained at Doi Ang Khang (DAK; high mountain and near-source of biomass-burning (BB) emissions) and Chiang Mai University (CMU; foothill site and an urban location) in northern peninsular Southeast Asia (PSEA) during dry BB season of 2015 through the analysis of water-soluble inorganic ions, organic carbon (OC), and elemental carbon (EC) contents. The 24-h average PM 2.5 levels (μg m −3 ) at DAK (118 ± 36) and CMU (113 ± 45) were about 4 folds greater than the WHO health-based guideline (25 μg m −3 ). Major diagnostics ratios between selected ions and carbonaceous fractions showed the significant BB influence on ambient aerosols. Enriched tracers in collected aerosols, such as NO 3 − , OC3 (evolved at 280–480 °C), and EC1-OP (EC evolved at 580 °C minus the pyrolized OC) confirmed that the samples were influenced by significant BB emissions. OC was the most abundant component in PM 2.5 and the contribution of BB to OC was estimated to be ~90%. For the first time, the conversion factor of OC to organic matter was estimated on the basis of mass closure approach to be 1.7 ± 0.3 and 1.6 ± 0.3 at DAK and CMU, respectively. Effective carbon ratio, which indicates an association between carbonaceous particles and climatic impact, at DAK revealed the significant atmospheric warming due to the presence of more absorbing aerosols attributed to near-source BB emissions at the high mountain site. The estimated inhalation dose of PM 2.5 and EC indicated severe health risk for local inhabitants during their outdoor activities. This study enhances the knowledge of aerosol chemical characterization and also addresses exposure to fine aerosols for local inhabitants during intense BB emissions in northern PSEA.
AB - This study aimed to characterize the PM 2.5 (particulate matter ≤ 2.5 μm in aerodynamic diameter) chemical components obtained at Doi Ang Khang (DAK; high mountain and near-source of biomass-burning (BB) emissions) and Chiang Mai University (CMU; foothill site and an urban location) in northern peninsular Southeast Asia (PSEA) during dry BB season of 2015 through the analysis of water-soluble inorganic ions, organic carbon (OC), and elemental carbon (EC) contents. The 24-h average PM 2.5 levels (μg m −3 ) at DAK (118 ± 36) and CMU (113 ± 45) were about 4 folds greater than the WHO health-based guideline (25 μg m −3 ). Major diagnostics ratios between selected ions and carbonaceous fractions showed the significant BB influence on ambient aerosols. Enriched tracers in collected aerosols, such as NO 3 − , OC3 (evolved at 280–480 °C), and EC1-OP (EC evolved at 580 °C minus the pyrolized OC) confirmed that the samples were influenced by significant BB emissions. OC was the most abundant component in PM 2.5 and the contribution of BB to OC was estimated to be ~90%. For the first time, the conversion factor of OC to organic matter was estimated on the basis of mass closure approach to be 1.7 ± 0.3 and 1.6 ± 0.3 at DAK and CMU, respectively. Effective carbon ratio, which indicates an association between carbonaceous particles and climatic impact, at DAK revealed the significant atmospheric warming due to the presence of more absorbing aerosols attributed to near-source BB emissions at the high mountain site. The estimated inhalation dose of PM 2.5 and EC indicated severe health risk for local inhabitants during their outdoor activities. This study enhances the knowledge of aerosol chemical characterization and also addresses exposure to fine aerosols for local inhabitants during intense BB emissions in northern PSEA.
KW - 7-SEAS
KW - Aerosol chemistry
KW - Effective carbon ratio
KW - Exposure dose
KW - OC to OM conversion factor
KW - PM
UR - http://www.scopus.com/inward/record.url?scp=85063391112&partnerID=8YFLogxK
U2 - 10.1016/j.atmosres.2019.03.031
DO - 10.1016/j.atmosres.2019.03.031
M3 - 期刊論文
AN - SCOPUS:85063391112
SN - 0169-8095
VL - 224
SP - 180
EP - 195
JO - Atmospheric Research
JF - Atmospheric Research
ER -