TY - JOUR
T1 - Biodegradable and pH-Responsive Amphiphilic Poly(succinimide) Derivatives for Triggered Release of Antibiotics for Management of Infected Wounds
AU - Lam, Dieu Linh
AU - Cheng, Ying Tzu
AU - Huang, Chun Jen
N1 - Publisher Copyright:
© 2023 American Chemical Society.
PY - 2023/11/22
Y1 - 2023/11/22
N2 - Wound infection has become a healthy economic burden globally. Current wound management mainly relies on the use of antibiotics; however, the misuse and overuse of antibiotics can easily result in antibiotic resistance. This study proposes a biodegradable, biocompatible, and pH-responsive amphiphilic 11-aminoundecanoic acid-grafted polysuccinimide (AUA-PSI) as a nanocarrier for drug encapsulation via nanoprecipitation. The succinimide groups in the backbone of PSI allow facile postfunctionalization via an aminolysis reaction. The degree of substitution of AUA can be modulated to adjust the degradation rate, pH sensitivity, and drug-release profile. Antibiotic rifampicin was incorporated with AUA-PSI to form Rif-AUA-PSI nanoparticles and demonstrated pH-responsiveness and antimicrobial activity. Because of the elevation of the pH value from pH = ∼ 5.5 in healthy skin to pH > 7 in an infected wound, Rif-AUA-PSI nanoparticles begin to decompose and release Rif upon the hydrolysis of succinimide/amide and deprotonation of carboxyl groups. The effective suppression of bacterial growth by Rif-AUA-PSI nanoparticles was demonstrated using a plate count method. More importantly, Rif-AUA-PSI nanoparticles were physically deposited on cotton gauze bandages as an antibiotic wound dressing. The Rif-AUA-PSI-modified gauze was applied to infected wounds on rats for wound management. The results show fast wound healing and inhibition of bacterial growth, which demonstrate that the method promotes modulable amphiphilicity, biodegradability, biocompatibility, pH-responsiveness, and facile modification for nanomedicine and medical devices.
AB - Wound infection has become a healthy economic burden globally. Current wound management mainly relies on the use of antibiotics; however, the misuse and overuse of antibiotics can easily result in antibiotic resistance. This study proposes a biodegradable, biocompatible, and pH-responsive amphiphilic 11-aminoundecanoic acid-grafted polysuccinimide (AUA-PSI) as a nanocarrier for drug encapsulation via nanoprecipitation. The succinimide groups in the backbone of PSI allow facile postfunctionalization via an aminolysis reaction. The degree of substitution of AUA can be modulated to adjust the degradation rate, pH sensitivity, and drug-release profile. Antibiotic rifampicin was incorporated with AUA-PSI to form Rif-AUA-PSI nanoparticles and demonstrated pH-responsiveness and antimicrobial activity. Because of the elevation of the pH value from pH = ∼ 5.5 in healthy skin to pH > 7 in an infected wound, Rif-AUA-PSI nanoparticles begin to decompose and release Rif upon the hydrolysis of succinimide/amide and deprotonation of carboxyl groups. The effective suppression of bacterial growth by Rif-AUA-PSI nanoparticles was demonstrated using a plate count method. More importantly, Rif-AUA-PSI nanoparticles were physically deposited on cotton gauze bandages as an antibiotic wound dressing. The Rif-AUA-PSI-modified gauze was applied to infected wounds on rats for wound management. The results show fast wound healing and inhibition of bacterial growth, which demonstrate that the method promotes modulable amphiphilicity, biodegradability, biocompatibility, pH-responsiveness, and facile modification for nanomedicine and medical devices.
KW - antibiotic resistance
KW - biodegradable polymer
KW - drug carrier
KW - pH-responsiveness
KW - triggered release
UR - http://www.scopus.com/inward/record.url?scp=85178106922&partnerID=8YFLogxK
U2 - 10.1021/acsami.3c12939
DO - 10.1021/acsami.3c12939
M3 - 期刊論文
C2 - 37947480
AN - SCOPUS:85178106922
SN - 1944-8244
VL - 15
SP - 53297
EP - 53309
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
IS - 46
ER -