Bilinear operators associated with Schrödinger operators

Chin Cheng Lin, Ying Chieh Lin, Heping Liu, Yu Liu

研究成果: 雜誌貢獻期刊論文同行評審

4 引文 斯高帕斯(Scopus)

摘要

Let L = -Δ +V be a Schrödinger operator in ℝd and HL1(ℝd) be the Hardy type space associated to L. We investigate the bilinear operators T+ and T - defined by T±(f,g)(x) = (T1f)(x) (T2g)(x) ± (T2f)(x)(T1g)(x), where T1 and T2 are Calderón-Zygmund operators related to L. Under some general conditions, we prove that either T+ or T - is bounded from Lp(ℝ) × Lq(ℝ d) to HL1(ℝd) for 1 < p, q < ∞ with 1/p + 1/q = 1. Several examples satisfying these conditions are given. We also give a counterexample for which the classical Hardy space estimate fails.

原文???core.languages.en_GB???
頁(從 - 到)281-295
頁數15
期刊Studia Mathematica
205
發行號3
DOIs
出版狀態已出版 - 2011

指紋

深入研究「Bilinear operators associated with Schrödinger operators」主題。共同形成了獨特的指紋。

引用此