TY - JOUR
T1 - Autonomous Brownian gyrators
T2 - A study on gyrating characteristics
AU - Chang, Hsin
AU - Lee, Chi Lun
AU - Lai, Pik Yin
AU - Chen, Yung Fu
N1 - Publisher Copyright:
© 2021 American Physical Society.
PY - 2021/2
Y1 - 2021/2
N2 - We study the nonequilibrium steady-state (NESS) dynamics of two-dimensional Brownian gyrators under harmonic and nonharmonic potentials via computer simulations and analyses based on the Fokker-Planck equation, while our nonharmonic cases feature a double-well potential and an isotropic quartic potential. In particular, we report two simple methods that can help understand gyrating patterns. For harmonic potentials, we use the Fokker-Planck equation to survey the NESS dynamical characteristics; i.e., the NESS currents gyrate along the equiprobability contours and the stationary point of flow coincides with the potential minimum. As a contrast, the NESS results in our nonharmonic potentials show that these properties are largely absent, as the gyrating patterns are very distinct from those of corresponding probability distributions. Furthermore, we observe a critical case of the double-well potential, where the harmonic contribution to the gyrating pattern becomes absent, and the NESS currents do not circulate about the equiprobability contours near the potential minima even at low temperatures.
AB - We study the nonequilibrium steady-state (NESS) dynamics of two-dimensional Brownian gyrators under harmonic and nonharmonic potentials via computer simulations and analyses based on the Fokker-Planck equation, while our nonharmonic cases feature a double-well potential and an isotropic quartic potential. In particular, we report two simple methods that can help understand gyrating patterns. For harmonic potentials, we use the Fokker-Planck equation to survey the NESS dynamical characteristics; i.e., the NESS currents gyrate along the equiprobability contours and the stationary point of flow coincides with the potential minimum. As a contrast, the NESS results in our nonharmonic potentials show that these properties are largely absent, as the gyrating patterns are very distinct from those of corresponding probability distributions. Furthermore, we observe a critical case of the double-well potential, where the harmonic contribution to the gyrating pattern becomes absent, and the NESS currents do not circulate about the equiprobability contours near the potential minima even at low temperatures.
UR - http://www.scopus.com/inward/record.url?scp=85101287934&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.103.022128
DO - 10.1103/PhysRevE.103.022128
M3 - 期刊論文
C2 - 33735993
AN - SCOPUS:85101287934
SN - 1539-3755
VL - 103
JO - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
JF - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
IS - 2
M1 - 022128
ER -