An overview of kernel based nonnegative matrix factorization

Viet Hang Duong, Wen Chi Hsieh, Pham The Bao, Jia Ching Wang

研究成果: 書貢獻/報告類型會議論文篇章同行評審

5 引文 斯高帕斯(Scopus)

摘要

Nonnegative matrix factorization (NMF) is a recent method used to decompose a given data matrix into two nonnegative sparse factors. There are many techniques applied to enhance abilities of NMF, particularly kernel technique which discovering higher-order correlation between data points and obtaining more powerful latent features. This paper presents an overview of kernel methods on NMF along with its representation and recent variants. The development as well as algorithms for kernel based NMF are discussed and presented systematically.

原文???core.languages.en_GB???
主出版物標題IEEE International Conference on Orange Technologies, ICOT 2014
發行者Institute of Electrical and Electronics Engineers Inc.
頁面227-231
頁數5
ISBN(電子)9781479962846
DOIs
出版狀態已出版 - 12 11月 2014
事件2014 IEEE International Conference on Orange Technologies, ICOT 2014 - Xi'an, China
持續時間: 20 9月 201423 9月 2014

出版系列

名字IEEE International Conference on Orange Technologies, ICOT 2014

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???2014 IEEE International Conference on Orange Technologies, ICOT 2014
國家/地區China
城市Xi'an
期間20/09/1423/09/14

指紋

深入研究「An overview of kernel based nonnegative matrix factorization」主題。共同形成了獨特的指紋。

引用此