An Improved Local Ternary Pattern for Texture Classification

Huang Chia Shih, Hsu Yung Cheng, Jr Chian Fu

研究成果: 書貢獻/報告類型會議論文篇章同行評審

1 引文 斯高帕斯(Scopus)

摘要

In this study, we proposed a new operator known as the synchronized rotation local ternary pattern (SRLTP) for texture classification. The proposed SRLTP descriptor improves on the local ternary pattern (LTP) method with an additional process on the generated lower and upper LTPs. The lower and upper patterns are encoded to a rotation invariant pattern histogram and a uniform pattern histogram, respectively. Thus, the feature vector can utilize the advantages offered by the rotation invariant pattern histogram while retaining the original information in the uniform pattern histogram. Moreover, in this study, a two-dimensional discrete wavelet transform (DWT) and a discrete Fourier transform (DFT) enhanced the robustness of the texture classification. The experimental results demonstrate that the performance of the SRLTP descriptor is better than those of the existing descriptors.

原文???core.languages.en_GB???
主出版物標題2019 IEEE International Conference on Image Processing, ICIP 2019 - Proceedings
發行者IEEE Computer Society
頁面4415-4418
頁數4
ISBN(電子)9781538662496
DOIs
出版狀態已出版 - 9月 2019
事件26th IEEE International Conference on Image Processing, ICIP 2019 - Taipei, Taiwan
持續時間: 22 9月 201925 9月 2019

出版系列

名字Proceedings - International Conference on Image Processing, ICIP
2019-September
ISSN(列印)1522-4880

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???26th IEEE International Conference on Image Processing, ICIP 2019
國家/地區Taiwan
城市Taipei
期間22/09/1925/09/19

指紋

深入研究「An Improved Local Ternary Pattern for Texture Classification」主題。共同形成了獨特的指紋。

引用此