An Energy-Efficient and Delay-Aware Wireless Computing System for Industrial Wireless Sensor Networks

Katsuya Suto, Hiroki Nishiyama, Nei Kato, Chih Wei Huang

研究成果: 雜誌貢獻期刊論文同行評審

49 引文 斯高帕斯(Scopus)


Industrial wireless sensor networks have attracted much attention as a cornerstone to making the smart factories real. Utilizing industrial wireless sensor networks as a base for smart factories makes it possible to optimize the production line without human resources, since it provides industrial Internet of Things service, where various types of data are collected from sensors and mined to control the machines based on the analysis result. On the other hand, a fog computing node, which executes such real-time feedback control, should be capable of real-time data collection, management, and processing. To achieve these requirements, in this paper, we introduce wireless computing system (WCS) as a fog computing node. Since there are a lot of servers and each server has 60 GHz antennas to connect to other servers and sensors, WCS has high collecting and processing capabilities. However, in order to fulfill a demand for real-time feedback control, WCS needs to satisfy an acceptable delay for data collection. In addition, lower power consumption is required in order to reduce the cost for the factory operation. Therefore, we propose an energy-efficient and delay-aware WCS. Since there is a tradeoff relationship between the power consumption and the delay for data collection, our proposed system controls the sleep schedule and the number of links to minimize the power consumption while satisfying an acceptable delay constraint. Furthermore, the effectiveness of our proposed system is evaluated through extensive computer simulations.

頁(從 - 到)1026-1035
期刊IEEE Access
出版狀態已出版 - 2015


深入研究「An Energy-Efficient and Delay-Aware Wireless Computing System for Industrial Wireless Sensor Networks」主題。共同形成了獨特的指紋。