An all-statistics, high-speed algorithm for the analysis of copy number variation in genomes

Chih Hao Chen, Hsing Chung Lee, Qingdong Ling, Hsiao Rong Chen, Yi An Ko, Tsong Shan Tsou, Sun Chong Wang, Li Ching Wu, H. C. Lee

研究成果: 雜誌貢獻期刊論文同行評審

4 引文 斯高帕斯(Scopus)

摘要

Detection of copy number variation (CNV) in DNA has recently become an important method for understanding the pathogenesis of cancer. While existing algorithms for extracting CNV from microarray data have worked reasonably well, the trend towards ever larger sample sizes and higher resolution microarrays has vastly increased the challenges they face. Here, we present Segmentation analysis of DNA (SAD), a clustering algorithm constructed with a strategy in which all operational decisions are based on simple and rigorous applications of statistical principles, measurement theory and precise mathematical relations. Compared with existing packages, SAD is simpler in formulation, more user friendly, much faster and less thirsty for memory, offers higher accuracy and supplies quantitative statistics for its predictions. Unique among such algorithms, SAD's running time scales linearly with array size; on a typical modern notebook, it completes high-quality CNV analyses for a 250 thousand-probe array in ∼1s and a 1.8 million-probe array in ∼8s.

原文???core.languages.en_GB???
頁(從 - 到)e89
期刊Nucleic Acids Research
39
發行號13
DOIs
出版狀態已出版 - 7月 2011

指紋

深入研究「An all-statistics, high-speed algorithm for the analysis of copy number variation in genomes」主題。共同形成了獨特的指紋。

引用此