TY - JOUR
T1 - Adsorption and desorption of crystal violet and basic red 9 by multi-walled carbon nanotubes
AU - Chen, Xian
AU - Chin, Ching Ju Monica
N1 - Publisher Copyright:
© IWA Publishing 2019
PY - 2019
Y1 - 2019
N2 - Batch adsorption and desorption of crystal violet (CV) and basic red 9 (BR9) on multi-walled carbon nanotubes (MWCNTs) were conducted. To investigate the possible mechanisms of adsorption/ desorption hysteresis, oxidized MWCNTs (O-MWCNTs) with more oxygen-containing groups were obtained by oxidizing as-purchased MWCNTs (A-MWCNTs) using nitric acid. The adsorption kinetics could be described by the pseudo-second-order model, suggesting that chemical reactions are the rate-limiting steps. The adsorption isotherms were fitted well by the Langmuir model, which suggests that, in addition to π–π interactions, chemical reactions significantly affect the adsorption. The adsorption capacity decreased in the order of CV on A-MWCNTs, BR9 on A-MWCNTs, and BR9 on O-MWCNTs, possibly because the amidation between BR9 and the surface groups of MWCNTs results in steric hindrance, which limits the adsorption of BR9 to inner grooves between CNT bundles. Adsorption/desorption hysteresis was observed for BR9 but not for CV. It was found that the π–π interaction and molecular entrapment were not responsible for the adsorption/desorption hysteresis. The hysteresis might be caused by the irreversible amide bonds between BR9 and MWCNTs. The results indicate that the steric hindrance due to the three-dimensional structure of organic compounds plays an important role in both adsorption/desorption kinetics and equilibria.
AB - Batch adsorption and desorption of crystal violet (CV) and basic red 9 (BR9) on multi-walled carbon nanotubes (MWCNTs) were conducted. To investigate the possible mechanisms of adsorption/ desorption hysteresis, oxidized MWCNTs (O-MWCNTs) with more oxygen-containing groups were obtained by oxidizing as-purchased MWCNTs (A-MWCNTs) using nitric acid. The adsorption kinetics could be described by the pseudo-second-order model, suggesting that chemical reactions are the rate-limiting steps. The adsorption isotherms were fitted well by the Langmuir model, which suggests that, in addition to π–π interactions, chemical reactions significantly affect the adsorption. The adsorption capacity decreased in the order of CV on A-MWCNTs, BR9 on A-MWCNTs, and BR9 on O-MWCNTs, possibly because the amidation between BR9 and the surface groups of MWCNTs results in steric hindrance, which limits the adsorption of BR9 to inner grooves between CNT bundles. Adsorption/desorption hysteresis was observed for BR9 but not for CV. It was found that the π–π interaction and molecular entrapment were not responsible for the adsorption/desorption hysteresis. The hysteresis might be caused by the irreversible amide bonds between BR9 and MWCNTs. The results indicate that the steric hindrance due to the three-dimensional structure of organic compounds plays an important role in both adsorption/desorption kinetics and equilibria.
KW - Adsorption/desorption hysteresis
KW - Amide bond
KW - Langmuir model
KW - Steric hindrance
UR - http://www.scopus.com/inward/record.url?scp=85067443007&partnerID=8YFLogxK
U2 - 10.2166/wst.2019.157
DO - 10.2166/wst.2019.157
M3 - 期刊論文
C2 - 31169512
AN - SCOPUS:85067443007
SN - 0273-1223
VL - 79
SP - 1541
EP - 1549
JO - Water Science and Technology
JF - Water Science and Technology
IS - 8
ER -