Adaptive Backstepping Control of Six-Phase PMSM Using Functional Link Radial Basis Function Network Uncertainty Observer

Faa Jeng Lin, Shih Gang Chen, I. Fan Sun

研究成果: 雜誌貢獻期刊論文同行評審

18 引文 斯高帕斯(Scopus)

摘要

An adaptive backstepping control (ABSC) using a functional link radial basis function network (FLRBFN) uncertainty observer is proposed in this study to construct a high-performance six-phase permanent magnet synchronous motor (PMSM) position servo drive system. The dynamic model of a field-oriented six-phase PMSM position servo drive is described first. Then, a backstepping control (BSC) system is designed for the tracking of the position reference. Since the lumped uncertainty of the six-phase PMSM position servo drive system is difficult to obtain in advance, it is very difficult to design an effective BSC for practical applications. Therefore, an ABSC system is designed using an adaptive law to estimate the required lumped uncertainty in the BSC system. To further increase the robustness of the six-phase PMSM position servo drive, an FLRBFN uncertainty observer is proposed to estimate the lumped uncertainty of the position servo drive. In addition, an online learning algorithm is derived using Lyapunov stability theorem to learn the parameters of the FLRBFN online. Finally, the proposed position control system is implemented in a 32-bit floating-point DSP, TMS320F28335. The effectiveness and robustness of the proposed intelligent ABSC system are verified by some experimental results.

原文???core.languages.en_GB???
頁(從 - 到)2255-2269
頁數15
期刊Asian Journal of Control
19
發行號6
DOIs
出版狀態已出版 - 11月 2017

指紋

深入研究「Adaptive Backstepping Control of Six-Phase PMSM Using Functional Link Radial Basis Function Network Uncertainty Observer」主題。共同形成了獨特的指紋。

引用此