摘要
In many tornado climate studies, the number of tornado touchdowns is often the primary outcome of interest. These outcome measures are usually generated under a spatiotemporal correlation structure and contains many zeros due to the rarity of tornado occurrence at a specific location and time interval. To model the spatiotemporal count data with excess zeros, we propose a spatiotemporal zero-inflated Poisson (ZIP) model, which lends itself to ease of interpretation and computational simplicity. Technically, we embed a modified conditional autoregressive model in the ZIP model to describe the spatial and temporal correlations, where the probability of a pure zero in the ZIP is purposely designed to depend on locations but independent of time. Illustrated with the longitudinal tornado touchdown data in the state of Kansas from 1950 to 2015, our model suggests that the spatial correlation among the counties and the corresponding temperature are significant factors attributed to the tornado touchdowns. Through the model, we can also estimate the probabilities of no tornado touchdowns for each county over time. These estimated probabilities substantially help us understand the pattern of touchdowns and further identify the risk areas across Kansas. Moreover, these estimates can be iteratively updated when more current touchdown data are available. The final model for Kansas tornado touchdown data is evaluated using more recent data.
原文 | ???core.languages.en_GB??? |
---|---|
頁(從 - 到) | 1-25 |
頁數 | 25 |
期刊 | Environmental and Ecological Statistics |
卷 | 31 |
發行號 | 1 |
DOIs | |
出版狀態 | 已出版 - 3月 2024 |