A Unified and Flexible Eigen-Solver for Rank-Deficient Matrix in MIMO Precoding/Beamforming Applications

Su An Chou, Amalia E. Rakhmania, Pei Yun Tsai

研究成果: 書貢獻/報告類型會議論文篇章同行評審

摘要

Eigenvalue decomposition (EVD) is a widely adopted technique to separate signal, interference, and noise subspaces. The paper presents a unified eigen-solver based on QR decomposition (QRD) to generate eigenpairs associated with the largest eigenvalues or zero eigenvalues, which are required in the MIMO hybrid beamforming systems that need interference suppression. A non-uniformly constrained deflation is proposed, which forces the matrix to deflate in the beginning and efficiently allocates the computation power to the eigenpairs related with the largest eigenvalues. The computation complexity of generating interested eigenpairs is also evaluated for various matrix dimensions. The results demonstrate that the non-uniformly constrained deflation is effective and more computations can be saved if the desired number of eigenpairs is smaller than the rank of the matrix.

原文???core.languages.en_GB???
主出版物標題2019 IEEE International Workshop on Signal Processing Systems, SiPS 2019
發行者Institute of Electrical and Electronics Engineers Inc.
頁面218-223
頁數6
ISBN(電子)9781728119274
DOIs
出版狀態已出版 - 10月 2019
事件33rd IEEE International Workshop on Signal Processing Systems, SiPS 2019 - Nanjing, China
持續時間: 20 10月 201923 10月 2019

出版系列

名字IEEE Workshop on Signal Processing Systems, SiPS: Design and Implementation
2019-October
ISSN(列印)1520-6130

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???33rd IEEE International Workshop on Signal Processing Systems, SiPS 2019
國家/地區China
城市Nanjing
期間20/10/1923/10/19

指紋

深入研究「A Unified and Flexible Eigen-Solver for Rank-Deficient Matrix in MIMO Precoding/Beamforming Applications」主題。共同形成了獨特的指紋。

引用此