A Simple Upper Bound on the Number of Antichains in [t]n

研究成果: 雜誌貢獻期刊論文同行評審

1 引文 斯高帕斯(Scopus)

摘要

In this paper for t > 2 and n > 2, we give a simple upper bound on a ([t]n), the number of antichains in chain product poset [t]n. When t = 2, the problem reduces to classical Dedekind’s problem posed in 1897 and studied extensively afterwards. However few upper bounds have been proposed for t > 2 and n > 2. The new bound is derived with straightforward extension of bracketing decomposition used by Hansel for bound 3(n⌊n/2⌋) for classical Dedekind’s problem. To our best knowledge, our new bound is the best when Θ((log2t)2)=6t4(log2(t+1))2π(t2−1)(2t−12log2(πt))2<n and t=ω(n1/8(log2n)3/4).

原文???core.languages.en_GB???
頁(從 - 到)507-510
頁數4
期刊Order
36
發行號3
DOIs
出版狀態已出版 - 1 11月 2019

指紋

深入研究「A Simple Upper Bound on the Number of Antichains in [t]n」主題。共同形成了獨特的指紋。

引用此