A shallow physics-informed neural network for solving partial differential equations on static and evolving surfaces

Wei Fan Hu, Yi Jun Shih, Te Sheng Lin, Ming Chih Lai

研究成果: 雜誌貢獻期刊論文同行評審

1 引文 斯高帕斯(Scopus)

摘要

In this paper, we introduce a shallow (one-hidden-layer) physics-informed neural network (PINN) for solving partial differential equations on static and evolving surfaces. For the static surface case, with the aid of a level set function, the surface normal and mean curvature used in the surface differential expressions can be computed easily. So, instead of imposing the normal extension constraints used in literature, we write the surface differential operators in the form of traditional Cartesian differential operators and use them in the loss function directly. We demonstrate a series of performance study for the present methodology by solving Laplace–Beltrami equations and surface diffusion equations on complex static surfaces. With just a moderate number of neurons used in the hidden layer, we are able to attain satisfactory prediction results. We then extend the present methodology to solve the advection–diffusion equation on an evolving surface with a given velocity. To track the deforming surface, we additionally introduce a network, in which a prescribed hidden layer is employed to enforce the topological structure of the surface and learn the homeomorphism between the surface and the prescribed topology. The proposed network structure is designed to track the surface and solve the equation simultaneously. Again, the numerical results show comparable accuracy as the static cases. As an application, we simulate surfactant transportation on a droplet surface under shear flow and obtain some physically plausible results.

原文???core.languages.en_GB???
文章編號116486
期刊Computer Methods in Applied Mechanics and Engineering
418
DOIs
出版狀態已出版 - 1 1月 2024

指紋

深入研究「A shallow physics-informed neural network for solving partial differential equations on static and evolving surfaces」主題。共同形成了獨特的指紋。

引用此