摘要
A nonlinear multigrid solver for solutions of unsteady three-dimensional incompressible viscous flow working on multi-GPU cluster is developed. The solver consists of a full approximation scheme (FAS) V-cycle scheme to accelerate the computation, in which the artificial compressibility method based Navier-Stokes solver is used as a smoother. Multi-stream overlapping strategies are designed to assist multi-GPU computations. The numerical procedure is validated by computing 3D laminar and turbulent flows within a lid-driven cubic cavity. The predicted results compare favorably with previous benchmark solutions and measurements, both in mean and turbulent quantities. For the performance of the FAS V-cycle scheme, up to two orders of magnitude speedups are reported, and the relationship between work unit (WU) and total grid number N is O(N0.3) under the deepest FAS V-cycle. A detailed evaluation of the GPU implementation is carried out employing the Roofline model and the scalability analysis.
原文 | ???core.languages.en_GB??? |
---|---|
文章編號 | 109447 |
期刊 | Journal of Computational Physics |
卷 | 414 |
DOIs | |
出版狀態 | 已出版 - 1 8月 2020 |