跳至主導覽
跳至搜尋
跳過主要內容
國立中央大學 首頁
說明與常見問題
English
中文
首頁
人才檔案
研究單位
研究計畫
研究成果
資料集
榮譽/獲獎
學術活動
新聞/媒體
影響
按專業知識、姓名或所屬機構搜尋
A Novel Relational Deep Network for Single Object Tracking
Pimpa Cheewaprakobkit,
Timothy K. Shih
,
Chih Yang Lin
, Hung Chun Liao
資訊工程學系
機械工程學系
研究成果
:
書貢獻/報告類型
›
會議論文篇章
›
同行評審
總覽
指紋
指紋
深入研究「A Novel Relational Deep Network for Single Object Tracking」主題。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
Object Tracking
100%
Multi-object Tracking
100%
Deep Network
100%
Performance Prediction
33%
Video Frames
33%
Object Detection
33%
Tracker
33%
Computer Vision
33%
Attention Mechanism
33%
Relations between Objects
33%
Deep Learning Methods
33%
Accuracy Improvement
33%
False Alarm
33%
Challenging Problems
33%
Siamese Network
33%
Occlusion Problem
33%
Active Research
33%
Performance Accuracy
33%
Variance Loss
33%
Training Model
33%
Correlation Filter
33%
Virtual Objects
33%
Attentional Processes
33%
Object Detection Algorithm
33%
Continuous Images
33%
Performance Problems
33%
Overlap Ratio
33%
Image Occlusion
33%
Siamese Network Architecture
33%
Engineering
Target Object
100%
Prediction Performance
50%
False Alarm
50%
Computervision
50%
Graphics Processing Unit
50%
Active Research
50%
Deep Learning Method
50%
Computer Science
Tracking Object
100%
Siamese Neural Network
40%
Object Detection
40%
Prediction Performance
20%
Network Architecture
20%
Attention (Machine Learning)
20%
Active Research
20%
Training Model
20%
Occlusion Problem
20%
Performance Problem
20%
Computer Vision
20%
Deep Learning Method
20%
Graphics Processing Unit
20%
Earth and Planetary Sciences
False Alarm
100%
Computer Vision
100%