跳至主導覽
跳至搜尋
跳過主要內容
國立中央大學 首頁
說明與常見問題
English
中文
首頁
人才檔案
研究單位
研究計畫
研究成果
資料集
榮譽/獲獎
學術活動
新聞/媒體
影響
按專業知識、姓名或所屬機構搜尋
A novel context-aware recommender system based on a deep sequential learning approach (CReS)
Tipajin Thaipisutikul,
Timothy K. Shih
資訊工程學系
研究成果
:
雜誌貢獻
›
期刊論文
›
同行評審
7
引文 斯高帕斯(Scopus)
總覽
指紋
指紋
深入研究「A novel context-aware recommender system based on a deep sequential learning approach (CReS)」主題。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
Systems-based
100%
Term Representation
100%
Learning Approaches
100%
Deep Sequential Model
100%
Context-aware Recommender Systems
100%
Contextual Information
66%
Item Relationships
66%
Hierarchical Relationship
66%
Unified Framework
33%
Sequential Behavior
33%
User Interest
33%
Low-rank
33%
User Interaction
33%
State-of-the-art Techniques
33%
Influence Users
33%
User Preference
33%
Auxiliary Input
33%
Residual Connection
33%
Multi-grained
33%
Accurate Recommendation
33%
Interpretable Results
33%
User Representation
33%
Hierarchical Attention Network
33%
Dynamic Preferences
33%
Hierarchical Users
33%
Multiple Granularity
33%
Sequential Features
33%
Sequence-aware
33%
Contextual Types
33%
Bi-directional GRU
33%
Short-term Preference
33%
GRU Network
33%
Ranking Vector
33%
Final Users
33%
User Dynamics
33%
Computer Science
Learning Approach
100%
Recommender Systems
100%
Sequential Learning
100%
Unified Framework
50%
User Interaction
50%
Context Information
50%
Contextual Information
50%
User Preference
50%
Granularity
50%
Attention Hierarchical Network
50%
User Representation
50%