A new relative bound for equiangular lines and nonexistence of tight spherical designs of harmonic index 4

Takayuki Okuda, Wei Hsuan Yu

研究成果: 雜誌貢獻期刊論文同行評審

17 引文 斯高帕斯(Scopus)

摘要

We give a new upper bound for the cardinality of a set of equiangular lines in Rn with a fixed common angle θ for each (n, θ) satisfying certain conditions. Our techniques are based on semidefinite programming methods for spherical codes introduced by Bachoc and Vallentin (2008). As a corollary to our bound, we show the nonexistence of spherical tight designs of harmonic index 4 on a sphere in Rn with n≥ 3.

原文???core.languages.en_GB???
頁(從 - 到)96-103
頁數8
期刊European Journal of Combinatorics
53
DOIs
出版狀態已出版 - 1 4月 2016

指紋

深入研究「A new relative bound for equiangular lines and nonexistence of tight spherical designs of harmonic index 4」主題。共同形成了獨特的指紋。

引用此