A new constrained nonnegative matrix factorization for facial expression recognition

Viet Hang Duong, Manh Quan Bui, Pham The Bao, Jia Ching Wang

研究成果: 書貢獻/報告類型會議論文篇章同行評審

1 引文 斯高帕斯(Scopus)

摘要

A new NMF model, spatial constrained graph sparse nonnegative matrix factorization (SGSNMF) is adopted for facial expression recognition. In this model, the extracted features preserve the topological structure of the original images and achieve sparseness from L2 constraint on coefficient matrix, meanwhile the base satisfy pixel dispersion penalty. The proposed method takes advantage of the project gradient decent and is based on the alternating nonnegative least square framework. Experiments on two facial expression recognition scenarios that involve a whole face and an occluded face reveal that the proposed algorithm outperforms the prevalent NMF methods.

原文???core.languages.en_GB???
主出版物標題Proceedings of the 2017 International Conference on Orange Technologies, ICOT 2017
編輯Minghui Dong, Lei Wang, Yanfeng Lu, Haizhou Li
發行者Institute of Electrical and Electronics Engineers Inc.
頁面79-82
頁數4
ISBN(電子)9781538632758
DOIs
出版狀態已出版 - 2 7月 2017
事件5th International Conference on Orange Technologies, ICOT 2017 - Singapore, Singapore
持續時間: 8 12月 201710 12月 2017

出版系列

名字Proceedings of the 2017 International Conference on Orange Technologies, ICOT 2017
2018-January

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???5th International Conference on Orange Technologies, ICOT 2017
國家/地區Singapore
城市Singapore
期間8/12/1710/12/17

指紋

深入研究「A new constrained nonnegative matrix factorization for facial expression recognition」主題。共同形成了獨特的指紋。

引用此