摘要
This paper presents a generalized conflict-free memory addressing scheme for memory-based fast Fourier transform (FFT) processors with parallel arithmetic processing units made up of radix-$2q multi-path delay commutator (MDC). The proposed addressing scheme considers the continuous-flow operation with minimum shared memory requirements. To improve throughput, parallel high-radix processing units are employed. We prove that the solution to non-conflict memory access satisfying the constraints of the continuous-flow, variable-size, higher-radix, and parallel-processing operations indeed exists. In addition, a rescheduling technique for twiddle-factor multiplication is developed to reduce hardware complexity and to enhance hardware efficiency. From the results, we can see that the proposed processor has high utilization and efficiency to support flexible configurability for various FFT sizes with fewer computation cycles than the conventional radix-2/radix-4 memory-based FFT processors.
原文 | ???core.languages.en_GB??? |
---|---|
文章編號 | 5599896 |
頁(從 - 到) | 2290-2302 |
頁數 | 13 |
期刊 | IEEE Transactions on Very Large Scale Integration (VLSI) Systems |
卷 | 19 |
發行號 | 12 |
DOIs | |
出版狀態 | 已出版 - 12月 2011 |