A dynamic surface plasmon resonance imager based on interferometric phase measurements

Jya Hong Yan, Yi Chun Chen, Cheng Chung Lee

研究成果: 書貢獻/報告類型會議論文篇章同行評審

摘要

A dynamic surface-plasmon-resonance (SPR) imaging sensor was developed to realize high-resolution high-throughput applications. The SPR device consisted of a half-cylinder prism, 47.5nm-thick gold thin film and a custom-designed flow cell to construct the Kretschmann configuration. A cylindrical lens pair in conjunction with the half-cylinder prism was used to simplify the optical alignment procedure and to ensure plane-wave propagation inside the prism. Phase-shifting interferometry was implemented by using a piezoelectric transducer (PZT) driven by a triangular voltage waveform. A CCD camera was employed to acquire the sequential interference patterns required for phase calculations. A reference signal obtained from a photodiode before the SPR device was used to compensate the system instability from the laser intensity, environmental disturbances, and mechanical vibrations from the PZT. Integrating-bucket data acquisition was realized with the synchronization between the photodiode and the CCD camera to preserve the dynamic capability of the SPR sensor. System evaluations were performed by salt-water mixture measurements and gold-spot array imaging. The achieved phase-measurement stability was 0.40 degrees and the system sensitivity was 5.14×10 4 degree/RIU (refractive index unit). The corresponding system resolution was 7.8×10-6 RIU. This SPR imager is anticipated to find applications in studying biomolecular interactions with high resolution, stability, throughput and dynamic capability.

原文???core.languages.en_GB???
主出版物標題Biosensing II
DOIs
出版狀態已出版 - 2009
事件Biosensing II - San Diego, CA, United States
持續時間: 4 8月 20096 8月 2009

出版系列

名字Proceedings of SPIE - The International Society for Optical Engineering
7397
ISSN(列印)0277-786X

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???Biosensing II
國家/地區United States
城市San Diego, CA
期間4/08/096/08/09

指紋

深入研究「A dynamic surface plasmon resonance imager based on interferometric phase measurements」主題。共同形成了獨特的指紋。

引用此