TY - JOUR
T1 - A comprehensive review of delay analysis techniques for solving concurrent delays
AU - Vo, Huy Minh
AU - Yang, Jyh Bin
AU - Rangasamy, Veerakumar
N1 - Publisher Copyright:
© 2024, Emerald Publishing Limited.
PY - 2024
Y1 - 2024
N2 - Purpose: Construction projects commonly encounter complicated delay problems. Over the past few decades, numerous delay analysis methods (DAMs) have been developed. There is no consensus on whether existing DAMs effectively resolve delays, particularly in the case of complex concurrent delays. Thus, the primary objective of this study is to undertake a comprehensive and systematic literature review on concurrent delays, aiming to answer the following research question: Do existing delay analysis techniques deal with concurrent delays well? Design/methodology/approach: This study conducts a comprehensive review of concurrent delays by both bibliometric and systematic analysis of research publications published between 1982 and 2022 in the Web of Science (WoS) and Scopus databases. For quantitative analysis, a bibliometric mapping tool, the VOSviewer, was employed to analyze 68 selected publications to explore the co-occurrence of keywords, co-authorship and direct citation. Additionally, we conducted a qualitative analysis to answer the targeted research question, identify academic knowledge gaps and explore potential research directions for solving the theoretical and practical problems of concurrent delays. Findings: Concurrent delays are a critical aspect of delay claims. Despite DAMs developed by a limited number of research teams to tackle issues like concurrence, float consumption and the critical path in concurrent delay resolution, practitioners continue to face significant challenges. This study has successfully identified knowledge gaps in defining, identifying, analyzing and allocating liability for concurrent delays while offering promising directions for further research. These findings reveal the incompleteness of available DAMs for solving concurrent delays. Practical implications: The outcomes of this study are highly beneficial for practitioners and researchers. For practitioners, the discussions on the resolution process of concurrent delays in terms of identification, analysis and apportionment enable them to proactively address concurrent delays and lay the groundwork for preventing and resolving such issues in their construction projects. For researchers, five research directions, including advanced DAMs capable of solving concurrent delays, are proposed for reference. Originality/value: Existing research on DAMs lacks comprehensive coverage of concurrent delays. Through a scientometric review, it is evident that current DAMs do not deal with concurrent delays well. This review identifies critical knowledge gaps and offers insights into potential directions for future research.
AB - Purpose: Construction projects commonly encounter complicated delay problems. Over the past few decades, numerous delay analysis methods (DAMs) have been developed. There is no consensus on whether existing DAMs effectively resolve delays, particularly in the case of complex concurrent delays. Thus, the primary objective of this study is to undertake a comprehensive and systematic literature review on concurrent delays, aiming to answer the following research question: Do existing delay analysis techniques deal with concurrent delays well? Design/methodology/approach: This study conducts a comprehensive review of concurrent delays by both bibliometric and systematic analysis of research publications published between 1982 and 2022 in the Web of Science (WoS) and Scopus databases. For quantitative analysis, a bibliometric mapping tool, the VOSviewer, was employed to analyze 68 selected publications to explore the co-occurrence of keywords, co-authorship and direct citation. Additionally, we conducted a qualitative analysis to answer the targeted research question, identify academic knowledge gaps and explore potential research directions for solving the theoretical and practical problems of concurrent delays. Findings: Concurrent delays are a critical aspect of delay claims. Despite DAMs developed by a limited number of research teams to tackle issues like concurrence, float consumption and the critical path in concurrent delay resolution, practitioners continue to face significant challenges. This study has successfully identified knowledge gaps in defining, identifying, analyzing and allocating liability for concurrent delays while offering promising directions for further research. These findings reveal the incompleteness of available DAMs for solving concurrent delays. Practical implications: The outcomes of this study are highly beneficial for practitioners and researchers. For practitioners, the discussions on the resolution process of concurrent delays in terms of identification, analysis and apportionment enable them to proactively address concurrent delays and lay the groundwork for preventing and resolving such issues in their construction projects. For researchers, five research directions, including advanced DAMs capable of solving concurrent delays, are proposed for reference. Originality/value: Existing research on DAMs lacks comprehensive coverage of concurrent delays. Through a scientometric review, it is evident that current DAMs do not deal with concurrent delays well. This review identifies critical knowledge gaps and offers insights into potential directions for future research.
KW - Concurrent delays
KW - Construction projects
KW - Delay analysis methods (DAMs)
KW - Delay claims
KW - Technical and legal perspectives
UR - http://www.scopus.com/inward/record.url?scp=85186202913&partnerID=8YFLogxK
U2 - 10.1108/ECAM-10-2023-1022
DO - 10.1108/ECAM-10-2023-1022
M3 - 回顧評介論文
AN - SCOPUS:85186202913
SN - 0969-9988
JO - Engineering, Construction and Architectural Management
JF - Engineering, Construction and Architectural Management
ER -