A comparative study of classifier ensembles for bankruptcy prediction

Chih Fong Tsai, Yu Feng Hsu, David C. Yen

研究成果: 雜誌貢獻期刊論文同行評審

104 引文 斯高帕斯(Scopus)


The aim of bankruptcy prediction in the areas of data mining and machine learning is to develop an effective model which can provide the higher prediction accuracy. In the prior literature, various classification techniques have been developed and studied, in/with which classifier ensembles by combining multiple classifiers approach have shown their outperformance over many single classifiers. However, in terms of constructing classifier ensembles, there are three critical issues which can affect their performance. The first one is the classification technique actually used/adopted, and the other two are the combination method to combine multiple classifiers and the number of classifiers to be combined, respectively. Since there are limited, relevant studies examining these aforementioned disuses, this paper conducts a comprehensive study of comparing classifier ensembles by three widely used classification techniques including multilayer perceptron (MLP) neural networks, support vector machines (SVM), and decision trees (DT) based on two well-known combination methods including bagging and boosting and different numbers of combined classifiers. Our experimental results by three public datasets show that DT ensembles composed of 80-100 classifiers using the boosting method perform best. The Wilcoxon signed ranked test also demonstrates that DT ensembles by boosting perform significantly different from the other classifier ensembles. Moreover, a further study over a real-world case by a Taiwan bankruptcy dataset was conducted, which also demonstrates the superiority of DT ensembles by boosting over the others.

頁(從 - 到)977-984
期刊Applied Soft Computing Journal
出版狀態已出版 - 11月 2014


深入研究「A comparative study of classifier ensembles for bankruptcy prediction」主題。共同形成了獨特的指紋。