A brief history of gravitational wave research

Chiang Mei Chen, James M. Nester, Wei Tou Ni

研究成果: 雜誌貢獻回顧評介論文同行評審

18 引文 斯高帕斯(Scopus)


For the benefit of the readers of this journal, the editors requested that we prepare a brief review of the history of the development of the theory, the experimental attempts to detect them, and the recent direct observations of gravitational waves (GWs). The theoretical ideas and disputes beginning with Einstein in 1916 regarding the existence and nature of gravitational waves and the extent to which one can rely on the electromagnetic analogy, especially the controversies regarding the quadrupole formula and whether gravitational waves carry energy, are discussed. The theoretical conclusions eventually received strong observational support from the binary pulsar. This provided compelling, although indirect, evidence for gravitational waves carrying away energy—as predicted by the quadrupole formula. On the direct detection experimental side, Joseph Weber started more than fifty years ago. In 1966, his bar for GW detection reached a strain sensitivity of a few times 10−16. His announcement of coincident signals (now considered spurious), stimulated many experimental efforts from room temperature resonant masses to cryogenic detectors and laser-interferometers. Now there are km-sized interferometric detectors (LIGO Hanford, LIGO Livingston, Virgo and KAGRA). Advanced LIGO first reached a strain sensitivity of the order of 10−22. During their first 130 days of observation (O1 run), with the aid of templates generated by numerical relativity, they did make the first detections: two 5-σ GW events and one likely event. Besides earth-based GW detectors, the drag-free sensitivity of the LISA Pathfinder has already reached to the LISA goal level, paving the road for space GW detectors. Over the whole GW spectrum (from aHz to THz) there are efforts for detection, notably the very-low-frequency band (pulsar timing array [PTA], 300 pHz – 100 nHz) and the extremely-low (Hubble)-frequency (cosmic microwave background [CMB] experiment, 1 aHz – 10 fHz).

頁(從 - 到)142-169
期刊Chinese Journal of Physics
出版狀態已出版 - 1 2月 2017


深入研究「A brief history of gravitational wave research」主題。共同形成了獨特的指紋。
  • 黑洞物理及其應用

    Chen, C.


    研究計畫: Research