TY - JOUR
T1 - A Boundary-Type Numerical Procedure to Solve Nonlinear Nonhomogeneous Backward-in-Time Heat Conduction Equations
AU - Chen, Yung Wei
AU - Shen, Jian Hung
AU - Chang, Yen Shen
AU - Chang, Chun Ming
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/10
Y1 - 2023/10
N2 - In this paper, an explicit boundary-type numerical procedure, including a constraint-type fictitious time integration method (FTIM) and a two-point boundary solution of the Lie-group shooting method (LGSM), is constructed to tackle nonlinear nonhomogeneous backward heat conduction problems (BHCPs). Conventional methods cannot effectively overcome numerical instability to solve inverse problems that lack initial conditions and take a long time to calculate, even using different variable transformations and regularization techniques. Therefore, an explicit-type numerical procedure is developed from the FTIM and the LGSM to avoid numerical instability and numerical iterations. First, a two-point boundary solution of the LGSM is introduced into the numerical algorithm. Then, the maximum and minimum values of the initial guess value can be determined linearly from the boundary conditions at the initial and final times. Finally, an explicit-type boundary-type numerical procedure, including a boundary value solution and constraint-type FTIM, can directly avoid the numerical iterative problems of BHCPs. Several nonlinear examples are tested. Based on the numerical results shown, this boundary-type numerical procedure using a two-point solution can directly obtain an approximated solution and can achieve stable convergence to boundary conditions, even if numerical iterations occur. Furthermore, the numerical efficiency and accuracy are better than in the previous literature, even with an increased computational time span without the regularization technique.
AB - In this paper, an explicit boundary-type numerical procedure, including a constraint-type fictitious time integration method (FTIM) and a two-point boundary solution of the Lie-group shooting method (LGSM), is constructed to tackle nonlinear nonhomogeneous backward heat conduction problems (BHCPs). Conventional methods cannot effectively overcome numerical instability to solve inverse problems that lack initial conditions and take a long time to calculate, even using different variable transformations and regularization techniques. Therefore, an explicit-type numerical procedure is developed from the FTIM and the LGSM to avoid numerical instability and numerical iterations. First, a two-point boundary solution of the LGSM is introduced into the numerical algorithm. Then, the maximum and minimum values of the initial guess value can be determined linearly from the boundary conditions at the initial and final times. Finally, an explicit-type boundary-type numerical procedure, including a boundary value solution and constraint-type FTIM, can directly avoid the numerical iterative problems of BHCPs. Several nonlinear examples are tested. Based on the numerical results shown, this boundary-type numerical procedure using a two-point solution can directly obtain an approximated solution and can achieve stable convergence to boundary conditions, even if numerical iterations occur. Furthermore, the numerical efficiency and accuracy are better than in the previous literature, even with an increased computational time span without the regularization technique.
KW - fictitious time integration method
KW - heat conduction equation
KW - ill-posed problem
KW - meshless method
KW - regularization technique
UR - http://www.scopus.com/inward/record.url?scp=85176552610&partnerID=8YFLogxK
U2 - 10.3390/math11194052
DO - 10.3390/math11194052
M3 - 期刊論文
AN - SCOPUS:85176552610
SN - 2227-7390
VL - 11
JO - Mathematics
JF - Mathematics
IS - 19
M1 - 4052
ER -