跳至主導覽
跳至搜尋
跳過主要內容
國立中央大學 首頁
說明與常見問題
English
中文
首頁
人才檔案
研究單位
研究計畫
研究成果
資料集
榮譽/獲獎
學術活動
新聞/媒體
影響
按專業知識、姓名或所屬機構搜尋
A beneficial dual transformation approach for deep learning networks used in steel surface defect detection
Fityanul Akhyar,
Chih Yang Lin
, Gugan S. Kathiresan
機械工程學系
研究成果
:
書貢獻/報告類型
›
會議論文篇章
›
同行評審
8
引文 斯高帕斯(Scopus)
總覽
指紋
指紋
深入研究「A beneficial dual transformation approach for deep learning networks used in steel surface defect detection」主題。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
Transformation Approach
100%
Deep Learning Network
100%
Dual Transformation
100%
Steel Surface Defect Detection
100%
Object Detection
50%
Feature Map
50%
Training Image
50%
Deep Learning Methods
50%
Data Augmentation
50%
Challenging Tasks
50%
Color Distribution
50%
Art Objects
50%
Object Detection Algorithm
50%
Bilinear Interpolation
50%
Defect Detection System
50%
Severstal
50%
Steel Surface Defects
50%
Tiny Size
50%
High-resolution Network
50%
HSV Color Model
50%
Small Resolution
50%
Computer Science
Object Detection
100%
Deep Learning Method
100%
Experimental Result
50%
And-States
50%
Training Image
50%
Data Augmentation
50%
Color Distribution
50%
Bilinear Interpolation
50%
Feature Map
50%
Engineering
Defect Detection
100%
Steel Surface
100%
Deep Learning Method
100%
Surface Defect
100%
Experimental Result
33%
High Resolution
33%
Bilinear Interpolation
33%
Chemical Engineering
Deep Learning Method
100%
Material Science
Surface Defect
100%