3D Face Reconstruction Based on Weakly-Supervised Learning Morphable Face Model

Kai Wen Liang, Pin Hsuan Li, Chung Hsun Lo, Chien Yao Wang, Yung Fang Chen, Jia Ching Wang, Pao Chi Chang

研究成果: 書貢獻/報告類型會議論文篇章同行評審

摘要

In this paper, we propose a system for 3D face model reconstruction. Earlier studies on reconstruction methods included the software modeling methods or the instrument scanning modeling methods. But both of the above methods require a lot of development resources and time costs. Therefore, we develop a reconstruction system using a weakly supervised approach combining Convolutional Neural Networks (CNN) and 3D Morphable Face Models (3DMM). Given a sufficient number of 2D face images to train and learn the main features of the face, our system is capable of rapidly constructing 3D face models. The proposed method enhances the efficiency of preprocessing and improves the performance of loss function through image depth feature extraction and regression coefficients. Using two datasets for model evaluation and analysis, this study efficiently reconstructs faces without ground-truth labels.

原文???core.languages.en_GB???
主出版物標題2023 IEEE International Conference on Image Processing, ICIP 2023 - Proceedings
發行者IEEE Computer Society
頁面3523-3527
頁數5
ISBN(電子)9781728198354
DOIs
出版狀態已出版 - 2023
事件30th IEEE International Conference on Image Processing, ICIP 2023 - Kuala Lumpur, Malaysia
持續時間: 8 10月 202311 10月 2023

出版系列

名字Proceedings - International Conference on Image Processing, ICIP
ISSN(列印)1522-4880

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???30th IEEE International Conference on Image Processing, ICIP 2023
國家/地區Malaysia
城市Kuala Lumpur
期間8/10/2311/10/23

指紋

深入研究「3D Face Reconstruction Based on Weakly-Supervised Learning Morphable Face Model」主題。共同形成了獨特的指紋。

引用此