基於 Transformer 的生醫輕量化命名實體識別系統

Zhi Quan Feng, Po Kai Chen, Jia Ching Wang

研究成果: 書貢獻/報告類型會議論文篇章同行評審

1 引文 斯高帕斯(Scopus)

摘要

Name Entity Recognition (NER) is a very important and basic task in traditional NLP tasks. In the biomedical field, NER tasks have been widely used in various products developed by various manufacturers. These include parsing, QA system, key information extraction or replacement in dialogue systems, and the practical application of knowledge parsing. In different fields, including bio-medicine, communication technology, e-commerce etc., NER technology is needed to identify drugs, diseases, commodities and other objects. This implementation focuses on the CLING 2022 SHARED TASK's(Lee et al. 2022) NER TASK in biomedical field, with a bit of tuning and experimentation based on the language models.

貢獻的翻譯標題NCU1415 at ROCLING 2022 Shared Task: A light-weight transformer-based approach for Biomedical Name Entity Recognition
原文繁體中文
主出版物標題ROCLING 2022 - Proceedings of the 34th Conference on Computational Linguistics and Speech Processing
編輯Yung-Chun Chang, Yi-Chin Huang, Jheng-Long Wu, Ming-Hsiang Su, Hen-Hsen Huang, Yi-Fen Liu, Lung-Hao Lee, Chin-Hung Chou, Yuan-Fu Liao
發行者The Association for Computational Linguistics and Chinese Language Processing (ACLCLP)
頁面316-320
頁數5
ISBN(電子)9789869576956
出版狀態已出版 - 2022
事件34th Conference on Computational Linguistics and Speech Processing, ROCLING 2022 - Taipei, Taiwan
持續時間: 21 11月 202222 11月 2022

出版系列

名字ROCLING 2022 - Proceedings of the 34th Conference on Computational Linguistics and Speech Processing

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???34th Conference on Computational Linguistics and Speech Processing, ROCLING 2022
國家/地區Taiwan
城市Taipei
期間21/11/2222/11/22

Keywords

  • Biomedical Science
  • Name Entity Recognition
  • ROCLING 2022 Shared Task

指紋

深入研究「基於 Transformer 的生醫輕量化命名實體識別系統」主題。共同形成了獨特的指紋。

引用此