混合型態的相關資料之強軔概似推論(1/2)

專案詳細資料

Description

本研究計劃想探知, 如使用了在分析單維度資料時皆具有可被強軔化的分配, 如gamma; Poisson; normal; negative binomial與binomial, 做為latent variables與location model方法中分配假設時,對這兩種模型的強軔性的影響為何?是賦予了latent variables與location model方法擁有原來這些分配單維度時可被強軔化的性質?還是這些具單維度分配之強軔性被latent variables與location model模型破壞掉? 我們針對的資料是多維混合型資料(如:相關的(個數,連續)型資料),相關的(個數,名目(nominal)型資料),相關的(名目,連續)型資料)。我們亦將試著以個人所長期研究的強軔概似函數法來分別與latent variables與location model模型比較它們在(1) 一致性 (consistency) (2) 有效性 (efficiency) 的表現。
狀態已完成
有效的開始/結束日期1/08/1931/07/20

Keywords

  • 相關混合資料
  • 強軔概似函數
  • 潛在變數模型
  • 位置模型

指紋

探索此專案觸及的研究主題。這些標籤是根據基礎獎勵/補助款而產生。共同形成了獨特的指紋。