專案詳細資料
Description
在線性代數裡,我們知道每一個invertible n by n matrix over a field F 都可以分解成有限多個elementary matrices over F 相乘。但是,針對任意一個 invertible n by n matrix over an arbitrary ringwith unity 這個性質不一定成立。令 R 代表一個 ring with unity,GL (R) n 代表 the group of allinvertible n by n matrices over R,GE (R) n 代表 the subgroup of GL (R) n generated by invertibleelementary n by n matrices over R。當 R 是 Euclidean ring 時,我們可以在很早期的文獻裡找到GL (R) n = GE (R) n for every positive integer n。在1966年的一篇論文裡(Publ. Math. IHES 30(1966), 5-53),P. M. Cohn introduced the concept of a generalized Euclidean ring,也就是 a ring Rwith unity is called a generalized Euclidean ring, or GE-ring for short, if and only if GL (R) n =GE (R) n for every positive integer n。最近,我們證明了一個相關的結果,即 a ring R is a GE-ringif it is a quasi-Euclidean ring which is an another generalization of the concept of a Euclidean ring。(Recall that a ring R is a quasi-Euclidean ring, introduced in 1976, if and only if it is a commutativering with unity and every pair (b, a) of elements in R has a terminating division chain of finite lengthstarting from it, in other words, a greatest common divisor of the pair (b, a) exists in R and it can beobtained by applying a terminating division chain of finite length starting from (b, a).)目前我們是知道一些例子,它們是 quasi-Euclidean rings 但不是 Euclidean rings,也知到一些例子,它們是 GE-rings 但不是 quasi-Euclidean rings。老實說這兩方面的例子在文獻上知道的並不豐富,這也就是吸引人的原因。在我的見識裡,the theories of generalized Euclidean rings andquasi-Euclidean rings,as part of the theory of Euclidean rings,are still underdeveloped。 在這次的計劃裡,我們希望能找到更多例子,它們是 quasi-Euclidean rings 但不是 Euclidean rings,也希望能找到一些例子,它們是 GE-rings 但不是 quasi-Euclidean rings。註:此申請案是本人最想執行的計畫。(第一優先)
狀態 | 已完成 |
---|---|
有效的開始/結束日期 | 1/08/16 → 31/07/17 |
指紋
探索此專案觸及的研究主題。這些標籤是根據基礎獎勵/補助款而產生。共同形成了獨特的指紋。