DR-SRWGAN:具備自我主動訓練且適用於虹膜定位與虹膜遮罩生成之超解析度解糾纏華生斯坦生成對抗深度學習網路

  • Li, Yung-Hui (PI)

專案詳細資料

Description

在以CNN為主軸的影像辨識工作上,如何蒐集大量的影像以供網路的訓練及測試使用,是實務上常遇到的困難。在深度虹膜辨識的模型訓練上也是如此。如何能夠蒐集到足夠多的特例影像來重新訓練神經網路,是一個很重要的議題。虹膜影像本身不易收集,需要特殊的光學設備,而特殊情況的虹膜影像,則更難以收集。在實務上,特殊的虹膜影像常常使得虹膜辨識系統的某個環節失效(例如虹膜定位)。因此收集大量特殊的虹膜影像,對於訓練新的深度學習虹膜辨識演算法,會有極大的幫助。為了產生足夠真實且可以針對特定目的的影像,我們提出了一種具備自我學習功能的生成對抗式網路,稱為 DR-SRWGAN,在此新的GAN架構裡面,我們綜合運用好幾個新近的GAN概念,包括:Pix2Pix, WGAN-GP、Super-Resolution GAN以及DFCN。運用此研究方法,根據使用者自行設定的參數條件,DR-SRWGAN可以根據實驗者的需求,隨機的產生各種各樣特殊類型虹膜影像以及其精確的Groundtruth label, 包括:虹膜內外邊界、虹膜遮罩、虹膜視角偏斜度、是否戴眼鏡等等資訊,藉此解決在進行深度學習實驗時訓練資料影像不足的問題。此研究成果可以應用於:虹膜辨識、其它領域的物體定位或者語意切割、高精確度之眼球追蹤系統、眼科相關疾病之影像分析、虹膜學等等。
狀態已完成
有效的開始/結束日期1/08/2031/07/21

聯合國永續發展目標

聯合國會員國於 2015 年同意 17 項全球永續發展目標 (SDG),以終結貧困、保護地球並確保全體的興盛繁榮。此專案有助於以下永續發展目標:

  • SDG 4 - 品質教育
  • SDG 11 - 永續發展的城市與社群
  • SDG 17 - 為永續目標構建夥伴關係

Keywords

  • 深度學習
  • 生物辨識
  • 深度虹膜辨識
  • 虹膜影像切割
  • 虹膜遮罩估測
  • 超解析度
  • 生成對抗式網路
  • 解糾纏網路
  • 自我訓練模型

指紋

探索此專案觸及的研究主題。這些標籤是根據基礎獎勵/補助款而產生。共同形成了獨特的指紋。