物聯網服務在4G/5G無線網路上行隨機存取演算法設計比較與應用分析(2/2)

專案詳細資料

Description

本計畫為兩年期之規劃,主要目的針對4G及5G網路物聯網上行資料隨機存取演算法之設計與比較。所探討的存取網路包括4G NB-IoT、及5G的URLLC與NOMA-SCMA,其中,4G NB-IoT為Grant base存取方式,而5G則是Grant free的存取方式。在演算法設計方面,將分別提出Rule based及Machine Learning based兩種設計方法。在傳輸性能比較上,將以防災應用(即時非週期性短時間大量訊務+非即時週期性訊務)、智慧工廠(即時週期性與非週期性訊務)、及醫療照護(即時非週期性訊務+週期性訊務)等三種物聯網訊務,進行模擬實驗比較,並檢視各演算法之詳細運作過程,從中分析不同存取網路、及不同演算法設計、在不同物聯網應用服務之適用性。兩年之主要計畫內容略述如下:第一年度:針對LTE NB-IoT及URLLC兩種網路之存取演算法進行設計及效能比較,在相同環境、假設條件、與預期目標下,分別提出Rule based及Machine Learning based共四種存取演算法,並進行在不同應用環境下之效能比較。第二年度:與OFDMA架構不同,SCMA採用非正交多工方式進行傳送,使得SCMA可以在同一個子載波上提供更多的CTU供UE傳送,能有更高的頻譜使用率,在演算法設計上,本研究將著重對CTU依演算法規畫進行分類,數量分配,並進行相關mapping rule的設計,以提升大量UE環境下之上行品質。除此之外,也將綜合分析兩年所提各種方法在不同物聯網服務之適用性。
狀態進行中
有效的開始/結束日期1/08/2131/07/22

聯合國永續發展目標

聯合國會員國於 2015 年同意 17 項全球永續發展目標 (SDG),以終結貧困、保護地球並確保全體的興盛繁榮。此專案有助於以下永續發展目標:

  • SDG 11 - 永續發展的城市與社群
  • SDG 12 - 負責任的消費與生產
  • SDG 17 - 為永續目標構建夥伴關係

Keywords

  • 隨機存取
  • 窄頻物聯網(NB-IoT)
  • 超可靠低延遲通訊(URLLC)
  • 非正交多工(NOMA)
  • 機器學習

指紋

探索此專案觸及的研究主題。這些標籤是根據基礎獎勵/補助款而產生。共同形成了獨特的指紋。