跳至主導覽
跳至搜尋
跳過主要內容
國立中央大學 首頁
說明與常見問題
English
中文
首頁
人才檔案
研究單位
研究計畫
研究成果
資料集
榮譽/獲獎
學術活動
新聞/媒體
影響
按專業知識、姓名或所屬機構搜尋
查看斯高帕斯 (Scopus) 概要
林 智揚
教授
機械工程學系
https://orcid.org/0000-0002-0401-8473
電子郵件
andrewlin
ncu.edu
tw
網站
https://www.me.ncu.edu.tw/portfolio-item/%E6%9E%97%E6%99%BA%E6%8F%9A/
h-index
1790
引文
22
h-指數
按照存儲在普爾(Pure)的出版物數量及斯高帕斯(Scopus)引文計算。
2001
2024
每年研究成果
概覽
指紋
網路
研究計畫
(5)
研究成果
(196)
類似的個人檔案
(6)
指紋
查看啟用 Chih-Yang Lin 的研究主題。這些主題標籤來自此人的作品。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Computer Science
Experimental Result
100%
Deep Learning Method
59%
Object Detection
52%
Convolutional Neural Network
39%
background modeling
28%
Vector Quantization
26%
Image Quality
24%
Detection Method
21%
Computer Vision
21%
moving object detection
20%
Video Surveillance
19%
Embedding Capacity
18%
Attention (Machine Learning)
17%
Authentication
15%
Decryption
14%
Face Recognition
13%
Sparse Representation
13%
Compressed Image
13%
nonnegative matrix factorization
13%
Data Hiding
12%
Multimedia
11%
Long Short-Term Memory Network
11%
Visually Impaired People
11%
Gaussian Mixture Model
11%
Image Segmentation
10%
Machine Learning
8%
Learning System
8%
Data Augmentation
8%
Recognition System
8%
Visual Quality
8%
Secret Sharing
8%
Robot
8%
Tracking Object
8%
Image Authentication
8%
Learning Approach
8%
Background Subtraction
8%
Network Architecture
7%
Steganography
7%
Finite-State Machine
7%
Privacy Preserving
7%
Neural Network
7%
Training Sample
6%
Anomaly Detection
6%
Segmentation Process
6%
Matrix Factorization
6%
Feature Map
6%
Detection Accuracy
6%
stego image
5%
Training Image
5%
Training Data
5%
Keyphrases
Deep Learning
36%
Deep Learning Methods
35%
Background Modeling
28%
Object Detection
26%
Object Detection Algorithm
23%
Moving Object Detection
23%
Vector Quantization
22%
Convolutional Neural Network
18%
Image Quality
16%
Moving Objects
15%
Abandoned Object
15%
Popular
15%
Image Compression
15%
Steganography Techniques
15%
Non-negative Matrix Factorization
14%
Fingerprinting
14%
Decryption
14%
Defect Detection
14%
Video Surveillance
14%
State-of-the-art Techniques
14%
Computer Vision
14%
Steel Surface Defect Detection
13%
Deep Learning Model
13%
Abandoned Object Detection
13%
Detection Method
12%
Embedding Capacity
12%
Single Image
11%
Sparse Representation
11%
Gaussian Mixture Model
11%
Long Short-term Memory
10%
Cover Image
10%
Visually Impaired
10%
Semantic Segmentation
9%
Rain
9%
Plantar Pressure
9%
Data Augmentation
9%
Network Architecture
9%
Real Environment
9%
Magnetic Resonance Imaging
9%
Gaussian Mixture
9%
High Efficiency
8%
Learning-based
8%
Detection Accuracy
8%
Image Authentication
8%
Pedestrian Detection
8%
Systems-based
8%
Surface Defects
8%
GrabCut
7%
Steel Surface Defects
7%
Genetic Algorithm
7%
Engineering
Deep Learning Method
64%
Experimental Result
53%
Surface Defect
32%
Convolutional Neural Network
27%
Defect Detection
24%
Moving Object
21%
Steel Surface
19%
Single Image
15%
State-of-the-Art Method
15%
Computervision
13%
Joints (Structural Components)
10%
Vector Quantization
9%
Surveillance System
8%
Genetic Algorithm
7%
Bit Plane
7%
Target Object
7%
Cooccurrence Matrix
7%
Multiscale
6%
Learning Approach
6%
Region of Interest
6%
Filtration
6%
Loss Function
6%
Bounding Box
5%
Code Book
5%