Work relation in instantaneous-equilibrium transition of forward and reverse processes

John A.C. Albay, Chulan Kwon, Pik Yin Lai, Yonggun Jun

Research output: Contribution to journalArticlepeer-review

4 Scopus citations


Realizing quasistatic processes in finite times requires additional control parameters to keep the system in instantaneous equilibrium (ieq). However, the finite-rate ieq transition of the reverse process is not just the time-reversal of the ieq forward process due to the odd-parity of controlling parameters. We theoretically show a work relation that the dissipated work of the ieq transition of the forward process is the same as that of the corresponding reverse process. The work relation can be interpreted as a generalization of equilibrium (quasistatic) processes. The work relation and the associated statistics of nonequilibrium work are experimentally confirmed in three different Brownian systems: the time-varying harmonic and non-harmonic potentials and the Brownian harmonic transport, which are manipulated by the optical feedback trap.

Original languageEnglish
Article number123049
JournalNew Journal of Physics
Issue number12
StatePublished - Dec 2020


  • Feedback trap
  • Shortcut-to-adiabaticity
  • Stochastic thermodynamics


Dive into the research topics of 'Work relation in instantaneous-equilibrium transition of forward and reverse processes'. Together they form a unique fingerprint.

Cite this