Virtual pitch extraction from harmonic structures by absolute-pitch musicians

I. Hui Hsieh, Kourosh Saberi

Research output: Contribution to journalArticlepeer-review

5 Scopus citations


The ability of absolute-pitch (AP) musicians to identify or produce virtual pitch from harmonic structures without feedback or an external acoustic referent was examined in three experiments. Stimuli consisted of pure tones, missing-fundamental harmonic complexes, or piano notes highpass filtered to remove their fundamental frequency and lower harmonics. Results of Experiment I showed that relative to control (non-AP) musicians, AP subjects easily (>90%) identified pitch of harmonic complexes in a 12-alternative forced-choice task. Increasing harmonic order (i.e., lowest harmonic number in the complex), however, resulted in a monotonic decline in performance. Results suggest that AP musicians use two pitch cues from harmonic structures: 1) spectral spacing between harmonic components, and 2) octave-related cues to note identification in individually resolved harmonics. Results of Experiment II showed that highpass filtered piano notes are identified by AP subjects at better than 75% accuracy even when the note's energy is confined to the 4th and higher harmonics. Identification of highpass piano notes also appears to be better than that expected from pure or complex tones, possibly due to contributions from familiar timbre cues to note identity. Results of Experiment III showed that AP subjects can adjust the spectral spacing between harmonics of a missing-fundamental complex to accurately match the expected spacing from a target musical note. Implications of these findings for mechanisms of AP encoding are discussed.

Original languageEnglish
Pages (from-to)232-239
Number of pages8
JournalAcoustical Physics
Issue number2
StatePublished - Mar 2009


Dive into the research topics of 'Virtual pitch extraction from harmonic structures by absolute-pitch musicians'. Together they form a unique fingerprint.

Cite this