TY - JOUR
T1 - Variable selection by association rules for customer churn prediction of multimedia on demand
AU - Tsai, Chih Fong
AU - Chen, Mao Yuan
PY - 2010/3/15
Y1 - 2010/3/15
N2 - Multimedia on demand (MOD) is an interactive system that provides a number of value-added services in addition to traditional TV services, such as video on demand and interactive online learning. This opens a new marketing and managerial problem for the telecommunication industry to retain valuable MOD customers. Data mining techniques have been widely applied to develop customer churn prediction models, such as neural networks and decision trees in the domain of mobile telecommunication. However, much related work focuses on developing the prediction models per se. Few studies consider the pre-processing step during data mining whose aim is to filter out unrepresentative data or information. This paper presents the important processes of developing MOD customer churn prediction models by data mining techniques. They contain the pre-processing stage for selecting important variables by association rules, which have not been applied before, the model construction stage by neural networks (NN) and decision trees (DT), which are widely adapted in the literature, and four evaluation measures including prediction accuracy, precision, recall, and F-measure, all of which have not been considered to examine the model performance. The source data are based on one telecommunication company providing the MOD services in Taiwan, and the experimental results show that using association rules allows the DT and NN models to provide better prediction performances over a chosen validation dataset. In particular, the DT model performs better than the NN model. Moreover, some useful and important rules in the DT model, which show the factors affecting a high proportion of customer churn, are also discussed for the marketing and managerial purpose.
AB - Multimedia on demand (MOD) is an interactive system that provides a number of value-added services in addition to traditional TV services, such as video on demand and interactive online learning. This opens a new marketing and managerial problem for the telecommunication industry to retain valuable MOD customers. Data mining techniques have been widely applied to develop customer churn prediction models, such as neural networks and decision trees in the domain of mobile telecommunication. However, much related work focuses on developing the prediction models per se. Few studies consider the pre-processing step during data mining whose aim is to filter out unrepresentative data or information. This paper presents the important processes of developing MOD customer churn prediction models by data mining techniques. They contain the pre-processing stage for selecting important variables by association rules, which have not been applied before, the model construction stage by neural networks (NN) and decision trees (DT), which are widely adapted in the literature, and four evaluation measures including prediction accuracy, precision, recall, and F-measure, all of which have not been considered to examine the model performance. The source data are based on one telecommunication company providing the MOD services in Taiwan, and the experimental results show that using association rules allows the DT and NN models to provide better prediction performances over a chosen validation dataset. In particular, the DT model performs better than the NN model. Moreover, some useful and important rules in the DT model, which show the factors affecting a high proportion of customer churn, are also discussed for the marketing and managerial purpose.
KW - Association rules
KW - Customer churn prediction
KW - Data mining
KW - Decision trees
KW - Multimedia on demand
KW - Neural networks
UR - http://www.scopus.com/inward/record.url?scp=70449521306&partnerID=8YFLogxK
U2 - 10.1016/j.eswa.2009.06.076
DO - 10.1016/j.eswa.2009.06.076
M3 - 期刊論文
AN - SCOPUS:70449521306
SN - 0957-4174
VL - 37
SP - 2006
EP - 2015
JO - Expert Systems with Applications
JF - Expert Systems with Applications
IS - 3
ER -