Ultralow-k Amorphous Boron Nitride Based on Hexagonal Ring Stacking Framework for 300 mm Silicon Technology Platform

Cheng Ming Lin, Chuang Han Hsu, Wei Yu Huang, Vincent Astié, Po Hsien Cheng, Yue Min Lin, Wei Shan Hu, Szu Hua Chen, Han Yu Lin, Ming Yang Li, Blanka Magyari-Kope, Chi Ming Yang, Jean Manuel Decams, Tzu Lih Lee, Dong Gui, Han Wang, Wei Yen Woon, Pinyen Lin, Jeff Wu, Jang Jung LeeSzuya Sandy Liao, Min Cao

Research output: Contribution to journalArticlepeer-review

7 Scopus citations


The implementation of ultralow dielectric constant (k value ≈ 2) materials to reduce signal propagation delay in advanced electronic devices represents a critical challenge in next generations of microelectronics technologies. The introduction of well-stacked and low polarity molecules that do not compromise film density may lead to improvements and desirable material engineering, as conventional porous SiOx derivatives exhibit detrimental degradation of thermo-mechanical properties when their k values are further scaled down. This work presents a systematic engineering approach for controlling ultralow-k amorphous boron nitride (aBN) deposition on 300 mm Si platforms. The results indicate that aBN grown from borazine precursor exhibits ultralow dielectric constant ≈2, high density, excellent mechanical strength, and extended thermodynamic stability. Unintentional boron ion doping during plasma dissociation that may induce artificial reductions of k value on n-type substrates is alleviated by employing a remote microwave plasma process. Moreover, the adoption of low growth rate processes for ultralow-k aBN deposition is found to be critical to provide for the superior mechanical strength and high density, and is attributed to the formation of hexagonal ring stacking frameworks. These results pave the way and offer engineering solutions for new ultralow-k material introduction into future semiconductor manufacturing applications.

Original languageEnglish
Article number2200022
JournalAdvanced Materials Technologies
Issue number10
StatePublished - 10 Oct 2022


  • 300 mm Si wafers
  • amorphous boron nitride
  • hexagonal rings
  • high density
  • superior mechanical strength
  • ultralow k


Dive into the research topics of 'Ultralow-k Amorphous Boron Nitride Based on Hexagonal Ring Stacking Framework for 300 mm Silicon Technology Platform'. Together they form a unique fingerprint.

Cite this