Two-dimensional gas chromatography with electron capture detection for the analysis of atmospheric ozone depleting halocarbons

Chang Feng Ou-Yang, Hsi Che Hua, Yu Chieh Chou, Ming Kai Teng, Wen Tzu Liu, Jia Lin Wang

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

This study is to develop a GC × GC method with electron capture detection (ECD) to analyze atmospheric halocarbons in the concentration range of parts per trillion by volume (pptv). To enrich atmospheric halocarbons a home-built thermal desorption (TD) device was coupled to the GC × GC-ECD. The technique of flow modulation was adopted using a Deans switch for GC × GC. Several column combinations of first and second dimensions were tested and the column set of DB–5 × TG-1301 was found to show the best orthogonality for halocarbons. A series of modulation parameters were tested for their optimal settings. The modulation period (PM) was found to have minimal wrap-around when set at 3 s. The modulation ratio (MR) was determined to be 7.82 to ensure reproducible results and maximum sensitivity. The modulation duty cycle (DC) was calculated to be approximately 0.17. Nine halocarbons were separated successfully and seven were calibrated with the use of a certified standard gas mixture. The correlation coefficients (R2) were greater than 0.9972. The reproducibility was better than 1.90% as expressed in relative standard deviation (RSD; N = 30) and the detection limits were in the range of pptv for the target halocarbons. A field test by continuous analyzing ambient air with hourly resolution was performed to show the stability of the method as suggested by the homogeneity of certain halocarbons, while also reflecting concentration variation for others when emissions did arise.

Original languageEnglish
Pages (from-to)158-164
Number of pages7
JournalJournal of Chromatography A
Volume1499
DOIs
StatePublished - 26 May 2017

Keywords

  • CFCs
  • Deans switch
  • Electron capture detector
  • Ozone depletion substance
  • Thermal desorption
  • Two-dimensional gas chromatography

Fingerprint

Dive into the research topics of 'Two-dimensional gas chromatography with electron capture detection for the analysis of atmospheric ozone depleting halocarbons'. Together they form a unique fingerprint.

Cite this