Abstract
Surface phonon-polariton, surface plasmon-polariton, and surface phonon-plasmon-polariton are evanescent electromagnetic waves confined to the surfaces of different classes of materials, which gives each of them particular characteristics suitable for diverse applications. Natural or forced injection of free carriers in a dielectric may change the surface phonon-polariton into a surface phonon-plasmon-polariton. Understanding this effect provides an insight into the fundamental physics of surface electromagnetic waves on dielectrics and offers tools that can be used to develop new technologies. In this contribution, we experimentally study the transition from surface phonon-polariton to surface phonon-plasmon-polariton on a yttrium-doped aluminum nitride polycrystalline substrate by thermal injection of free carriers. We perform this study using reflectivity measurements in the far- and mid-infrared spectral range and at a variable temperature, taking the necessary precautions to eliminate any errors that may arise from measurement artifacts and inaccurate analysis of the spectra. We demonstrate that thermal injection of a significant free carrier density can tune the surface phonon-polariton into a much shorter mean free path surface phonon-plasmon-polariton.
Original language | English |
---|---|
Article number | 265003 |
Journal | Journal of Physics Condensed Matter |
Volume | 34 |
Issue number | 26 |
DOIs | |
State | Published - 29 Jun 2022 |
Keywords
- energy transport
- surface electromagnetic wave
- thermal injection